逻辑回归学习笔记

逻辑回归学习笔记

本文仅为了个人学习理解使用

逻辑回归

逻辑回归是用来解决二分类问题
回归模型的输出是连续的;分类模型的输出是离散的
sigmoid 函数

  • 逻辑回归=线性回归+sigmoid函数
  • 线性回归: z = w ∗ x + b z=w*x+b z=wx+b
  • sigmoid函数: y = 1 1 + e − z = 1 1 + e − ( w ∗ x + b ) y=\frac{1}{1+e^{-z} } =\frac{1}{1+e^{-(w*x+b)} } y=1+ez1=1+e(wx+b)1
  • 逻辑回归损失函数(损失函数越小模型越好,训练过程即使得损失函数最小的优化过程):
    C = − [ y ln ⁡ a + ( 1 − y ) ln ⁡ ( 1 − a ) ] C=-[y \ln a+(1-y) \ln (1-a)] C=[ylna+(1y)ln(1a)]

损失函数

 cost  = { − log ⁡ ( p ^ )  if  y = 1 − log ⁡ ( 1 − p ^ )  if  y = 0 \text { cost }=\left\{\begin{array}{ccc} -\log (\hat{p}) & \text { if } & y=1 \\ -\log (1-\hat{p}) & \text { if } & y=0 \end{array}\right.  cost ={ log(p^)log(1p^) if  if y=1y=0cost
单个样本损失函数则表示为:
 cost  = − y log ⁡ ( p ^ ) − ( 1 − y ) log ⁡ ( 1 − p ^ ) \text { cost }=-y \log (\hat{p})-(1-y) \log (1-\hat{p})  cost =ylog(p^)(1y)log(1p^)
所有样本损失函数(求和):
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( p ^ ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − p ^ ( i ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\hat{p}^{(i)}\right)+\left(1-y^{(i)}\right) \log \left(1-\hat{p}^{(i)}\right) J(θ)=m1i=1my(i)log(p^(i))+(1y(i))log(1p^(i))
J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( σ ( X b ( i ) θ ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − σ ( X b ( i ) θ ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\sigma\left(X_{b}^{(i)} \theta\right)\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(X_{b}^{(i)} \theta\right)\right) J(θ)=m1i=1my(i)log(σ(Xb(i)θ))+(1y(i))log(1σ(Xb(i)θ))
上式无法做数学解析解,但是该解析函数为凸函数(没有全局最优解,只有局部最优解),可以用梯度下降法求解。

梯度下降法

J ( θ ) = − 1 m ∑ i = 1 m y ( i ) log ⁡ ( σ ( X b ( i ) θ ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − σ ( X b ( i ) θ ) ) J(\theta)=-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \left(\sigma\left(X_{b}^{(i)} \theta\right)\right)+\left(1-y^{(i)}\right) \log \left(1-\sigma\left(X_{b}^{(i)} \theta\right)\right) J(θ)=m1i=1my(i)log(σ(Xb(i)θ))+(1y(i))log(1σ(Xb(i)θ))
∇ J ( θ ) = ( ∂ J ( θ ) ∂ θ ∂ ∂ J ( θ ) ∂ θ 1 ⋯ ∂ J ( θ ) ∂ θ n ) \nabla J(\theta)=\left(\begin{array}{c} \frac{\partial J(\theta)}{\partial \theta_{\partial}} \\ \frac{\partial J(\theta)}{\partial \theta_{1}} \\ \cdots \\ \frac{\partial J(\theta)}{\partial \theta_{n}} \end{array}\right) J(θ)= θJ(θ)θ1J(θ)θnJ(θ)
先看sigmoid函数求导
σ ( t ) = 1 1 + e − t = ( 1 + e − t ) − 1 \sigma(t)=\frac{1}{1+e^{-t}}=\left(1+e^{-t}\right)^{-1} σ(t)=1+et1=(1+et)1
σ ( t ) ′ = − ( 1 + e − t ) − 2 ⋅ e − t ⋅ ( − 1 ) = ( 1 + e − t ) − 2 ⋅ e − t ⋅ \sigma(t)^{\prime}=-\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \cdot(-1)=\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \cdot σ(t)=(1+et)2et(1)=(1+et)2et
再扩一层
( log ⁡ σ ( t ) ) ′ = 1 σ ( t ) ⋅ σ ( t ) ′ = 1 σ ( t ) ⋅ ( 1 + e − t ) − 2 ⋅ e − t = 1 ( 1 + e − t ) − 1 ⋅ ( 1 + e − t ) − 2 ⋅ e − t = ( 1 + e − t ) − 1 ⋅ e − t \begin{aligned} (\log \sigma(t))^{\prime}&=\frac{1}{\sigma(t)} \cdot \sigma(t)^{\prime}=\frac{1}{\sigma(t)} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \\ &=\frac{1}{\left(1+e^{-t}\right)^{-1}} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t}=\left(1+e^{-t}\right)^{-1} \cdot e^{-t} \end{aligned} (logσ(t))=σ(t)1σ(t)=σ(t)1(1+et)2et=(1+et)11(1+et)2et=(1+et)1et
( log ⁡ σ ( t ) ) ′ = ( 1 + e − t ) − 1 ⋅ e − t = e − t 1 + e − t = 1 + e − t − 1 1 + e − t = 1 − 1 1 + e − t = 1 − σ ( t ) \begin{aligned} (\log \sigma(t))^{\prime} &=\left(1+e^{-t}\right)^{-1} \cdot e^{-t} \\ &=\frac{e^{-t}}{1+e^{-t}}=\frac{1+e^{-t}-1}{1+e^{-t}}=1-\frac{1}{1+e^{-t}} \\ &=1-\sigma(t) \end{aligned} (logσ(t))=(1+et)1et=1+etet=1+et1+et1=11+et1=1σ(t)
d ( y ( i ) log ⁡ σ ( X b ( i ) θ ) ) d θ j = y ( i ) ( 1 − σ ( X b ( i ) θ ) ) ⋅ X j ( i ) \frac{d\left(y^{(i)} \log \sigma\left(X_{b}^{(i)} \theta\right)\right)}{d \theta_{j}}=y^{(i)}\left(1-\sigma\left(X_{b}^{(i)} \theta\right)\right) \cdot X_{j}^{(i)} dθjd(y(i)logσ(Xb(i)θ))=y(i)(1σ(Xb(i)θ))Xj(i)
( log ⁡ ( 1 − σ ( t ) ) ) ′ = 1 1 − , σ ( t ) ⋅ ( − 1 ) ⋅ σ ( t ) ′ = − 1 1 − σ ( t ) ⋅ ( 1 + e − t ) − 2 ⋅ e − t = − 1 + e − t e − t ⋅ ( 1 + e − t ) − 2 ⋅ e − t = − ( 1 + e − t ) − 1 = − σ ( t ) \begin{aligned} (\log (1-\sigma(t)))^{\prime}=&\frac{1}{1-, \sigma(t)} \cdot(-1) \cdot \sigma(t)^{\prime}=-\frac{1}{1-\sigma(t)} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \\ &=-\frac{1+e^{-t}}{e^{-t}} \cdot\left(1+e^{-t}\right)^{-2} \cdot e^{-t} \\ &=-\left(1+e^{-t}\right)^{-1}=-\sigma(t) \end{aligned} (log(1σ(t)))=1,σ(t)1(1)σ(t)=1σ(t)1(1+et)2et=et1+et(1+et)2et=(1+et)1=σ(t)
d ( ( 1 − y ( i ) ) log ⁡ ( 1 − σ ( X b ( i ) θ ) ) ) d θ j = ( 1 − y ( i ) ) ⋅ ( − σ ( X b ( i ) θ ) ) ⋅ X j ( i ) \frac{d\left(\left(1-y^{(i)}\right) \log \left(1-\sigma\left(X_{b}^{(i)} \theta\right)\right)\right)}{d \theta_{j}}=\left(1-y^{(i)}\right) \cdot\left(-\sigma\left(X_{b}^{(i)} \theta\right)\right) \cdot X_{j}^{(i)} dθjd((1y(i))log(1σ(Xb(i)θ)))=(1y(i))(σ(Xb(i)θ))Xj(i)
J ( θ ) θ j = 1 m ∑ i = 1 m ( σ ( X b ( i ) θ ) − y ( i ) ) X j ( i ) = 1 m ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) X j ( i ) \begin{aligned} \frac{J(\theta)}{\theta_{j}}= &\frac{1}{m} \sum_{i=1}^{m}\left(\sigma\left(X_{b}^{(i)} \theta\right)-y^{(i)}\right) X_{j}^{(i)}\\ &=\frac{1}{m} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) X_{j}^{(i)} \end{aligned} θjJ(θ)=m1i=1m(σ(Xb(i)θ)y(i))Xj(i)=m1i=1m(y^(i)y(i))Xj(i)
其中 y ^ ( i ) \hat{y}^{(i)} y^(i)就是那个预测值
∇ J ( θ ) = ( ∂ J / ∂ θ 0 ∂ J / ∂ θ 1 ∂ J / ∂ θ 2 … ∂ J / ∂ θ n ) = 1 m ⋅ ( ∑ i = 1 m ( σ ( X b ( i ) θ ) − y ( i ) ) ∑ i = 1 m ( σ ( X b ( i ) θ ) − y ( i ) ) ⋅ X 1 ( i ) ∑ i = 1 m ( σ ( X b ( i ) θ ) − y ( i ) ) ⋅ X 2 ( i ) … ∑ i = 1 m ( σ ( X b ( i ) θ ) − y ( i ) ) ⋅ X n ( i ) ) = 1 m ⋅ ( ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X 1 ( i ) ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X 2 ( i ) … ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) ⋅ X n ( i ) ) \nabla J(\theta)=\left(\begin{array}{c} \partial J / \partial \theta_{0} \\ \partial J / \partial \theta_{1} \\ \partial J / \partial \theta_{2} \\ \ldots \\ \partial J / \partial \theta_{n} \end{array}\right)=\frac{1}{m} \cdot\left( \begin{gathered} \sum_{i=1}^{m}\left(\sigma\left(X_{b}^{(i)} \theta\right)-y^{(i)}\right) \\ \sum_{i=1}^{m}\left(\sigma\left(X_{b}^{(i)} \theta\right)-y^{(i)}\right) \cdot X_{1}^{(i)}\\ \sum_{i=1}^{m}\left(\sigma\left(X_{b}^{(i)} \theta\right)-y^{(i)}\right) \cdot X_{2}^{(i)}\\ \ldots \\ \sum_{i=1}^{m}\left(\sigma\left(X_{b}^{(i)} \theta\right)-y^{(i)}\right) \cdot X_{n}^{(i)} \end{gathered}\right) =\frac{1}{m} \cdot\left( \begin{gathered} \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \\ \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \cdot X_{1}^{(i)}\\ \sum_{i=1}^{m}\left(\hat{y}^{(i)}-y^{(i)}\right) \cdot X_{2}^{(i)}\\ \ldots \\ \sum_{i=1}^{m}\left(\hat{y}^{(i)} -y^{(i)}\right) \cdot X_{n}^{(i)} \end{gathered}\right) J(θ)= J/θ0J/θ1J/θ2J/θn =m1 i=1m(σ(Xb(i)θ)y(i))i=1m(σ(Xb(i)θ)y(i))X1(i)i=1m(σ(Xb(i)θ)y(i))X2(i)i=1m(σ(Xb(i)θ)y(i))Xn(i) =m1 i=1m(y^(i)y(i))i=1m(y^(i)y(i))X1(i)i=1m(y^(i)y(i))X2(i)i=1m(y^(i)y(i))Xn(i)
对上面式子向量化(没看懂,不会推)
∇ J ( θ ) = 1 m ⋅ X b T ⋅ ( σ ( X b θ ) − y ) \nabla J(\theta)=\frac{1}{m} \cdot X_{b}^{T} \cdot\left(\sigma\left(X_{b} \theta\right)-y\right) J(θ)=m1XbT(σ(Xbθ)y)

梯度下降法

最优化算法,适用于有唯一极值点的函数。对于没有唯一极值点的函数,可以多次运行,随机化初始点。
学习率 η \eta η取值会影响最优解的速度,若取值不合适则得不到最优解。 η \eta η为梯度下降法的一个超参数

目标:使得 J ( θ ) = MSE ⁡ ( y , y ^ ) J(\theta)=\operatorname{MSE}(y, \hat{y}) J(θ)=MSE(y,y^)尽可能小
1 m ∑ i = 1 m ( y ( i ) − y ^ ( i ) ) 2 = 1 m ∑ i = 1 m ( y ( i ) − θ 0 − θ 1 X 1 ( i ) − θ 2 X 2 k ( i ) − … − θ n X n ( i ) ) 2 \frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-\hat{y}^{(i)}\right)^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)}-\theta_{0}-\theta_{1} X_{1}^{(i)}-\theta_{2} X_{2 k}^{(i)}-\ldots-\theta_{n} X_{n}^{(i)}\right)^{2} m1i=1m(y(i)y^(i))2=m1i=1m(y(i)θ0θ1X1(i)θ2X2k(i)θnXn(i))2
∇ J ( θ ) = ( ∂ J / ∂ θ 0 ∂ J / ∂ θ 1 ∂ J / ∂ θ 2 … ∂ J / ∂ θ n ) = ( ∑ i = 1 m 2 ( y ( i ) − X b ( i ) θ ) ⋅ ( − 1 ) ∑ i = 1 m 2 ( y ( i ) − X b ( i ) θ ) ⋅ ( − X 1 ( i ) ) ∑ i = 1 m 2 ( y ( i ) − X b ( i ) θ ) ⋅ ( − X 2 ( i ) ) … ∑ i = 1 m 2 ( y ( i ) − X b ( i ) θ ) ⋅ ( − X n ( i ) ) ) = 2 m ⋅ ( ∑ i = 1 m ( X b ( i ) θ − y ( i ) ) ∑ i = 1 m ( X b ( i ) θ − y ( i ) ) ⋅ X 1 ( i ) ∑ i = 1 m ( X b ( i ) θ − y ( i ) ) ⋅ X 2 ( i ) … ∑ i = 1 m ( X b ( i ) θ − y ( i ) ) ⋅ X n ( i ) ) \nabla J(\theta)=\left(\begin{array}{c} \partial J / \partial \theta_{0} \\ \partial J / \partial \theta_{1} \\ \partial J / \partial \theta_{2} \\ \ldots \\ \partial J / \partial \theta_{n} \end{array}\right)=\left(\begin{array}{c} \sum_{i=1}^{m} 2\left(y^{(i)}-X_{b}^{(i)} \theta\right) \cdot(-1) \\ \sum_{i=1}^{m} 2\left(y^{(i)}-X_{b}^{(i)} \theta\right) \cdot\left(-X_{1}^{(i)}\right) \\ \sum_{i=1}^{m} 2\left(y^{(i)}-X_{b}^{(i)} \theta\right) \cdot\left(-X_{2}^{(i)}\right) \\ \ldots \\ \sum_{i=1}^{m} 2\left(y^{(i)}-X_{b}^{(i)} \theta\right) \cdot\left(-X_{n}^{(i)}\right) \end{array}\right)=\frac{2 }{m}\cdot\left(\begin{array}{c} \sum_{i=1}^{m}\left(X_{b}^{(i)} \theta-y^{(i)}\right) \\ \sum_{i=1}^{m}\left(X_{b}^{(i)} \theta-y^{(i)}\right) \cdot X_{1}^{(i)} \\ \sum_{i=1}^{m}\left(X_{b}^{(i)} \theta-y^{(i)}\right) \cdot X_{2}^{(i)} \\ \ldots \\ \sum_{i=1}^{m}\left(X_{b}^{(i)} \theta-y^{(i)}\right) \cdot X_{n}^{(i)} \end{array}\right) J(θ)= J/θ0J/θ1J/θ2J/θn = i=1m2(y(i)Xb(i)θ)(1)i=1m2(y(i)Xb(i)θ)(X1(i))i=1m2(y(i)Xb(i)θ)(X2(i))i=1m2(y(i)Xb(i)θ)(Xn(i)) =m2 i=1m(Xb(i)θy(i))i=1m(Xb(i)θy(i))X1(i)i=1m(Xb(i)θy(i))X2(i)i=1m(Xb(i)θy(i))Xn(i)
θ i = θ i − η ∂ J ( θ 0 , θ 1 , ⋯   , θ n ) ∂ θ i \theta_{i}=\theta_{i}-\eta \frac{\partial J\left(\theta_{0}, \theta_{1}, \cdots, \theta_{n}\right)}{\partial \theta_{i}} θi=θiηθiJ(θ0,θ1,,θn)

梯度下降法的小算例(含PYTHON 程序)
梯度下降法1
梯度下降法2

附录

##参考学习
Sigmoid函数解析
逻辑回归十分钟学会,通俗易懂(内含spark求解过程)【B站】

猜你喜欢

转载自blog.csdn.net/weixin_42918965/article/details/126063666