Chapter2.1:控制系统的数学模型

此系列属于胡寿松《自动控制原理题海与考研指导》(第三版)习题精选,仅包含部分经典习题,需要完整版习题答案请自行查找,本系列属于知识点巩固部分,搭配如下几个系列进行学习,可用于期末考试和考研复习。
自动控制原理(第七版)知识提炼
自动控制原理(第七版)课后习题精选
自动控制原理(第七版)附录MATLAB基础



第二章:控制系统的数学模型

Example2.1

求下列函数的拉普拉斯变换 F ( s ) F(s) F(s),并求当 a → 0 a\rightarrow0 a0 F ( s ) F(s) F(s)的极限值。
f ( t ) = { 0 , t < 0 1 a 2 , 0 < t < a 1 − a 2 , a < t < 2 a 0 , t > 2 a f(t)= \begin{cases} 0, & t<0\\\\ \displaystyle\frac{1}{a^2}, & 0<t<a\\\\ \displaystyle\frac{1}{-a^2}, & a<t<2a\\\\ 0, & t>2a \end{cases} f(t)= 0,a21,a21,0,t<00<t<aa<t<2at>2a
解:
F ( s ) = L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 a 1 a 2 e − s t d t − ∫ a 2 a 1 a 2 e − s t d t = 1 a 2 s ( e − 0 s − e − a s ) − 1 a 2 s ( e − a s − e − 2 a s ) = 1 − 2 e − a s + e − 2 a s a 2 s \begin{aligned} F(s)&=L[f(t)]=\int_{0}^{+\infty}f(t)e^{-st}dt=\int_0^a\frac{1}{a^2}e^{-st}dt-\int_a^{2a}\frac{1}{a^2}e^{-st}dt\\\\ &=\frac{1}{a^2s}(e^{-0s}-e^{-as})-\frac{1}{a^2s}(e^{-as}-e^{-2as})\\\\ &=\frac{1-2e^{-as}+e^{-2as}}{a^2s} \end{aligned} F(s)=L[f(t)]=0+f(t)estdt=0aa21estdta2aa21estdt=a2s1(e0seas)a2s1(ease2as)=a2s12eas+e2as

lim ⁡ a → 0 F ( s ) = lim ⁡ a → 0 1 − 2 e − a s + e − 2 a s a 2 s = lim ⁡ a → 0 2 s e − a s − 2 s e − 2 a s 2 a s = lim ⁡ a → 0 − 2 s 2 e − a s + 4 s 2 e − 2 a s 2 s = s \begin{aligned} \lim_{a\rightarrow0}F(s)&=\lim_{a\rightarrow0}\frac{1-2e^{-as}+e^{-2as}}{a^2s}=\lim_{a\rightarrow0}\frac{2se^{-as}-2se^{-2as}}{2as}\\ &=\lim_{a\rightarrow0}\frac{-2s^2e^{-as}+4s^2e^{-2as}}{2s}=s \end{aligned} a0limF(s)=a0lima2s12eas+e2as=a0lim2as2seas2se2as=a0lim2s2s2eas+4s2e2as=s

Example 2.2

求下图所示函数 f ( t ) f(t) f(t)的拉普拉斯变换式 F ( s ) F(s) F(s)
1

解:

图(a):
F ( s ) = L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 t 0 2 e − s t d t + ∫ t 0 + ∞ ( t − t 0 + 2 ) e − s t d t = ∫ t 0 + ∞ t e − s t d t − t 0 ∫ t 0 + ∞ e − s t d t + 2 ∫ 0 + ∞ e − s t d t = − 1 s [ − t 0 e − t 0 s + 1 s ( 0 − e − t 0 s ) ] − t 0 s e − t 0 s + 2 s = 2 s + 1 s 2 e − t 0 s \begin{aligned} F(s)&=L[f(t)]=\int_0^{+\infty}f(t)e^{-st}dt=\int_{0}^{t_0}2e^{-st}dt+\int_{t_0}^{+\infty}(t-t_0+2)e^{-st}dt\\\\ &=\int_{t_0}^{+\infty}te^{-st}dt-t_0\int_{t_0}^{+\infty}e^{-st}dt+2\int_{0}^{+\infty}e^{-st}dt\\\\ &=-\frac{1}{s}[-t_0e^{-t_0s}+\frac{1}{s}(0-e^{-t_0s})]-\frac{t_0}{s}e^{-t_0s}+\frac{2}{s}\\\\ &=\frac{2}{s}+\frac{1}{s^2}e^{-t_0s} \end{aligned} F(s)=L[f(t)]=0+f(t)estdt=0t02estdt+t0+(tt0+2)estdt=t0+testdtt0t0+estdt+20+estdt=s1[t0et0s+s1(0et0s)]st0et0s+s2=s2+s21et0s
图(b):
F ( s ) = L [ f ( t ) ] = ∫ 0 + ∞ f ( t ) e − s t d t = ∫ 0 T / 2 e − s t d t − ∫ T / 2 T e − s t d t + ∫ T 3 T / 2 e − s t d t − ∫ 3 T / 2 2 T e − s t d t + … = − 1 s ( e − s ( 1 ⋅ T / 2 ) − e − s ( 0 ⋅ T / 2 ) + e − s ( 3 ⋅ T / 2 ) − e − s ( 2 ⋅ T / 2 ) + …   )       + 1 s ( e − s ( 2 ⋅ T / 2 ) − e − s ( 1 ⋅ T / 2 ) + e − s ( 4 ⋅ T / 2 ) − e − s ( 3 ⋅ T / 2 ) + …   ) = 1 s + 2 s ∑ i = 1 + ∞ e − i s T − 2 s ∑ i = 1 + ∞ e − i s T / 2 = 1 s tanh ⁡ s T 4 \begin{aligned} F(s)&=L[f(t)]=\int_{0}^{+\infty}f(t)e^{-st}dt\\\\ &=\int_{0}^{T/2}e^{-st}dt-\int_{T/2}^Te^{-st}dt+\int_{T}^{3T/2}e^{-st}dt-\int_{3T/2}^{2T}e^{-st}dt+\dots\\\\ &=-\frac{1}{s}(e^{-s(1·T/2)}-e^{-s(0·T/2)}+e^{-s(3·T/2)}-e^{-s(2·T/2)}+\dots)\\\\ &\space\space\space\space\space+\frac{1}{s}(e^{-s(2·T/2)}-e^{-s(1·T/2)}+e^{-s(4·T/2)}-e^{-s(3·T/2)}+\dots)\\\\ &=\frac{1}{s}+\frac{2}{s}\sum_{i=1}^{+\infty}e^{-isT}-\frac{2}{s}\sum_{i=1}^{+\infty}e^{-isT/2}\\\\ &=\frac{1}{s}\tanh\frac{sT}{4} \end{aligned} F(s)=L[f(t)]=0+f(t)estdt=0T/2estdtT/2Testdt+T3T/2estdt3T/22Testdt+=s1(es(1T/2)es(0T/2)+es(3T/2)es(2T/2)+)     +s1(es(2T/2)es(1T/2)+es(4T/2)es(3T/2)+)=s1+s2i=1+eisTs2i=1+eisT/2=s1tanh4sT

Example 2.3

求下列函数的拉普拉斯反变换。

  1. F ( s ) = s + 1 ( s + 2 ) ( s + 3 ) F(s)=\displaystyle\frac{s+1}{(s+2)(s+3)} F(s)=(s+2)(s+3)s+1
  2. F ( s ) = s + 2 s ( s + 1 ) 2 ( s + 3 ) F(s)=\displaystyle\frac{s+2}{s(s+1)^2(s+3)} F(s)=s(s+1)2(s+3)s+2

实例1:

解:
f ( t ) = L − 1 [ F ( s ) ] = L − 1 [ s + 1 ( s + 2 ) ( s + 3 ) ] = L − 1 ( 2 s + 3 − 1 s + 2 ) = 2 e − 3 t − e − 2 t \begin{aligned} f(t)&=L^{-1}[F(s)]=L^{-1}\begin{bmatrix}\displaystyle\frac{s+1}{(s+2)(s+3)}\end{bmatrix}=L^{-1}\begin{pmatrix}\displaystyle\frac{2}{s+3}-\frac{1}{s+2}\end{pmatrix}=2e^{-3t}-e^{-2t} \end{aligned} f(t)=L1[F(s)]=L1[(s+2)(s+3)s+1]=L1(s+32s+21)=2e3te2t
实例2:

解:
f ( t ) = L − 1 [ F ( s ) ] = L − 1 [ s + 2 s ( s + 1 ) 2 ( s + 3 ) ] = L − 1 [ 2 s ( s + 3 ) − 2 s ( s + 3 ) ( s + 1 ) 2 − 3 ( s + 3 ) ( s + 1 ) 2 ] = 2 3 ( 1 − e − 3 t ) − ( 3 2 e − t − t e − t − 3 2 e − 3 t ) − ( 3 4 e − 3 t − 3 4 e − t + 3 2 t e − t ) = 2 3 + 1 12 e − 3 t − 3 4 e − t − 1 2 t e − t \begin{aligned} f(t)&=L^{-1}\begin{bmatrix}F(s)\end{bmatrix}=L^{-1}\begin{bmatrix}\displaystyle\frac{s+2}{s(s+1)^2(s+3)}\end{bmatrix}\\\\ &=L^{-1}\begin{bmatrix}\displaystyle\frac{2}{s(s+3)}-\frac{2s}{(s+3)(s+1)^2}-\frac{3}{(s+3)(s+1)^2}\end{bmatrix}\\\\ &=\frac{2}{3}(1-e^{-3t})-(\frac{3}{2}e^{-t}-te^{-t}-\frac{3}{2}e^{-3t})-(\frac{3}{4}e^{-3t}-\frac{3}{4}e^{-t}+\frac{3}{2}te^{-t})\\\\ &=\frac{2}{3}+\frac{1}{12}e^{-3t}-\frac{3}{4}e^{-t}-\frac{1}{2}te^{-t} \end{aligned} f(t)=L1[F(s)]=L1[s(s+1)2(s+3)s+2]=L1[s(s+3)2(s+3)(s+1)22s(s+3)(s+1)23]=32(1e3t)(23ettet23e3t)(43e3t43et+23tet)=32+121e3t43et21tet

Example 2.4

应用拉普拉斯变换终值定理求函数 f ( t ) f(t) f(t)的终值,并通过拉普拉斯反变换,令 t → ∞ t\rightarrow\infty t证明其计算结果, f ( t ) f(t) f(t)的拉普拉斯变换如下:
F ( s ) = 10 s ( s + 1 ) F(s)=\frac{10}{s(s+1)} F(s)=s(s+1)10
解:
f ( t ) = L − 1 [ F ( s ) ] = L − 1 [ 10 s ( s + 1 ) ] = 10 ( 1 − e − t ) f(t)=L^{-1}[F(s)]=L^{-1}\begin{bmatrix}\displaystyle\frac{10}{s(s+1)}\end{bmatrix}=10(1-e^{-t}) f(t)=L1[F(s)]=L1[s(s+1)10]=10(1et)

lim ⁡ s → 0 s F ( s ) = lim ⁡ s → 0 10 s s ( s + 1 ) = lim ⁡ s → 0 10 s + 1 = 10 \lim_{s\rightarrow0}sF(s)=\lim_{s\rightarrow0}\frac{10s}{s(s+1)}=\lim_{s\rightarrow0}\frac{10}{s+1}=10 s0limsF(s)=s0lims(s+1)10s=s0lims+110=10

lim ⁡ t → ∞ f ( t ) = lim ⁡ t → ∞ 10 ( 1 − e − t ) = 10 \lim_{t\rightarrow\infty}f(t)=\lim_{t\rightarrow\infty}10(1-e^{-t})=10 tlimf(t)=tlim10(1et)=10

Example 2.5

设质量-弹簧-摩擦系统如下图所示,图中 f f f为黏性摩擦系数, k k k为弹簧系数,系统的输入量为力 p ( t ) p(t) p(t),系统的输出量为质量 m m m的位移 x ( t ) x(t) x(t);列出系统的输入输出微分方程。(水平系统)
2
解:

根据牛顿第二定律有:
p ( t ) − f d x ( t ) d t − k x ( t ) = m d 2 x ( t ) d t 2 p(t)-f\frac{dx(t)}{dt}-kx(t)=m\frac{d^2x(t)}{dt^2} p(t)fdtdx(t)kx(t)=mdt2d2x(t)
系统的微分方程为:
m d 2 x ( t ) d t 2 + f d x ( t ) d t + k x ( t ) = p ( t ) m\frac{d^2x(t)}{dt^2}+f\frac{dx(t)}{dt}+kx(t)=p(t) mdt2d2x(t)+fdtdx(t)+kx(t)=p(t)

Example 2.6

系统如下图所示,列写下图机械系统的运动微分方程。(垂直系统)
3

解:

根据力平衡方程,对 M 1 、 M 2 M_1、M_2 M1M2分别采用隔离法列出方程:
{ F − K 1 y 1 − f 1 y ˙ 1 + K 12 ( y 2 − y 1 ) = M 1 y ¨ 1 − K 12 ( y 2 − y 1 ) = M 2 y ¨ 2 \begin{cases} &F-K_1y_1-f_1\dot{y}_1+K_{12}(y_2-y_1)=M_1\ddot{y}_1 \\\\ &-K_{12}(y_2-y_1)=M_2\ddot{y}_2 \end{cases} FK1y1f1y˙1+K12(y2y1)=M1y¨1K12(y2y1)=M2y¨2
整理得:
{ M 1 x ¨ 1 + f 1 y ˙ 1 + K 1 y 1 − K 12 ( y 2 − y 1 ) = F M 2 y ¨ 2 + K 12 ( y 2 − y 1 ) = 0 \begin{cases} &M_1\ddot{x}_1+f_1\dot{y}_1+K_1y_1-K_{12}(y_2-y_1)=F\\\\ &M_2\ddot{y}_2+K_{12}(y_2-y_1)=0 \end{cases} M1x¨1+f1y˙1+K1y1K12(y2y1)=FM2y¨2+K12(y2y1)=0

Example 2.7

系统如下图所示,列写下图机械系统得运动微分方程。(水平系统)
4

解:

根据力平衡方程,可得:
{ F = M 1 x ¨ 1 + f 1 x ˙ 1 + K 1 x 1 + f 12 ( x ˙ 1 − x ˙ 2 ) 0 = M 2 x ¨ 2 + f 2 x ˙ 2 + K 2 x 2 + f 12 ( x ˙ 2 − x ˙ 1 ) \begin{cases} &F=M_1\ddot{x}_1+f_1\dot{x}_1+K_1x_1+f_{12}(\dot{x}_1-\dot{x}_2) \\\\ &0=M_2\ddot{x}_2+f_2\dot{x}_2+K_2x_2+f_{12}(\dot{x}_2-\dot{x}_1) \end{cases} F=M1x¨1+f1x˙1+K1x1+f12(x˙1x˙2)0=M2x¨2+f2x˙2+K2x2+f12(x˙2x˙1)

Example 2.8

设有倒摆装在只能沿 x x x方向移动得小车上,如下图所示;图中, M M M为小车质量, m m m为摆的质量, l l l为摆长, J J J为摆的转动惯量;当小车受到外力 u ( t ) u(t) u(t)作用时,如果摆的角位移 φ ( t ) \varphi(t) φ(t)较小,推导描述 φ ( t ) \varphi(t) φ(t)的运动方程。
5
解:

倒立摆小车受力分析如上图(b)所示,其中: m g mg mg为重力, m x ¨ ( t ) m\ddot{x}(t) mx¨(t) x x x方向的惯性力, m g sin ⁡ φ ( t ) mg\sin\varphi(t) mgsinφ(t)为垂直于摆杆方向的重力分力;

x x x方向上,小车的惯性力为 M x ¨ ( t ) M\ddot{x}(t) Mx¨(t),摆球产生的位移量为 x ( t ) + l sin ⁡ φ ( t ) x(t)+l\sin\varphi(t) x(t)+lsinφ(t);在垂直摆杆方向上,摆球的转动惯性力为 J φ ¨ ( t ) J\ddot{\varphi}(t) Jφ¨(t) m x ¨ ( t ) m\ddot{x}(t) mx¨(t)的分力为 m x ¨ ( t ) cos ⁡ φ ( t ) m\ddot{x}(t)\cos\varphi(t) mx¨(t)cosφ(t)

根据力的平衡原则,在 x x x方向及垂直于摆杆的方向上,有如下运动方程:
u ( t ) = M [ d 2 x ( t ) d t 2 ] + m [ d 2 x ( t ) d t 2 + d 2 ( l sin ⁡ φ ( t ) ) d t 2 ] u(t)=M\begin{bmatrix}\displaystyle\frac{d^2x(t)}{dt^2}\end{bmatrix}+m\begin{bmatrix}\displaystyle\frac{d^2x(t)}{dt^2}+\frac{d^2(l\sin\varphi(t))}{dt^2}\end{bmatrix} u(t)=M[dt2d2x(t)]+m[dt2d2x(t)+dt2d2(lsinφ(t))]

m g sin ⁡ φ ( t ) = J d 2 φ ( t ) d t 2 + m d 2 x ( t ) d t 2 cos ⁡ φ ( t ) mg\sin\varphi(t)=J\frac{d^2\varphi(t)}{dt^2}+m\frac{d^2x(t)}{dt^2}\cos\varphi(t) mgsinφ(t)=Jdt2d2φ(t)+mdt2d2x(t)cosφ(t)

联立求解可得:
[ ( M + m ) J − m 2 l cos ⁡ 2 φ ( t ) ] d 2 φ ( t ) d t 2 + m 2 l sin ⁡ φ ( t ) cos ⁡ φ ( t ) [ d φ ( t ) d t ] 2 − ( M + m ) m g sin ⁡ φ ( t ) + m u ( t ) cos ⁡ φ ( t ) = 0 [(M+m)J-m^2l\cos^2\varphi(t)]\frac{d^2\varphi(t)}{dt^2}+m^2l\sin\varphi(t)\cos\varphi(t)[\frac{d\varphi(t)}{dt}]^2\\ -(M+m)mg\sin\varphi(t)+mu(t)\cos\varphi(t)=0 [(M+m)Jm2lcos2φ(t)]dt2d2φ(t)+m2lsinφ(t)cosφ(t)[dtdφ(t)]2(M+m)mgsinφ(t)+mu(t)cosφ(t)=0
上式是非线性运动微分方程,当 φ ( t ) \varphi(t) φ(t)较小时,取:
sin ⁡ φ ( t ) ≈ φ ( t ) , cos ⁡ φ ( t ) ≈ 1 \sin\varphi(t)≈\varphi(t),\cos\varphi(t)≈1 sinφ(t)φ(t)cosφ(t)1
略去 φ ˙ 2 ( t ) \dot{\varphi}^2(t) φ˙2(t)高次项,得线性运动微分方程:
[ ( M + m ) J − m 2 l ] d 2 φ ( t ) d t 2 + ( M + m ) g φ ( t ) = u ( t ) [(M+m)J-m^2l]\frac{d^2\varphi(t)}{dt^2}+(M+m)g\varphi(t)=u(t) [(M+m)Jm2l]dt2d2φ(t)+(M+m)gφ(t)=u(t)

Example 2.9

设有一用热电偶测量热容器温度得温度测量装置,热电偶的热阻为 R 1 R_1 R1,热容为 C 1 C_1 C1,时间常数为 T 1 = R 1 C 1 T_1=R_1C_1 T1=R1C1,重量为 M 1 M_1 M1;热容器的热阻为 R 2 R_2 R2,热容为 C 2 C_2 C2,时间常数为 T 2 = R 2 C 2 T_2=R_2C_2 T2=R2C2,重量为 M 2 M_2 M2;假设热电偶与热容器比热 C p C_p Cp相同,且热电偶-热容器组合系统的热阻为 R R R,热容为 C C C,重量为 M M M,时间常数为 T T T;证明
T = T 1 T 2 ( M 1 + M 2 ) T 1 M 2 + T 2 M 1 T=\frac{T_1T_2(M_1+M_2)}{T_1M_2+T_2M_1} T=T1M2+T2M1T1T2(M1+M2)
(提示: C = M C p / g , g C=MC_p/g,g C=MCp/gg为重力加速度; 1 / R = 1 R 1 + 1 R 2 1/R=\displaystyle\frac{1}{R_1}+\frac{1}{R_2} 1/R=R11+R21);

证明:

依题意得:
T = R C = R 1 R 2 R 1 + R 2 ⋅ ( M 1 + M 2 ) C p g T=RC=\frac{R_1R_2}{R_1+R_2}·\frac{(M_1+M_2)C_p}{g} T=RC=R1+R2R1R2g(M1+M2)Cp
因为:
C 1 = M 1 C p / g , C 2 = M 2 C p / g C_1=M_1C_p/g,C_2=M_2C_p/g C1=M1Cp/gC2=M2Cp/g
因此:
C p = C 1 g / M 1 = C 2 g / M 2 C_p=C_1g/M_1=C_2g/M_2 Cp=C1g/M1=C2g/M2
即:
T = R C = R 1 R 2 R 1 + R 2 ⋅ ( M 1 + M 2 ) C p g = M 1 + M 2 1 R 1 ⋅ g C p + 1 R 2 ⋅ g C p = M 1 + M 2 M 1 R 1 C 1 + M 2 R 2 C 2 = M 1 + M 2 M 1 T 1 + M 2 T 2 = T 1 T 2 ( M 1 + M 2 ) T 1 M 2 + T 2 M 1 \begin{aligned} T&=RC=\frac{R_1R_2}{R_1+R_2}·\frac{(M_1+M_2)C_p}{g}=\frac{M_1+M_2}{\displaystyle\frac{1}{R_1}·\frac{g}{C_p}+\frac{1}{R_2}·\frac{g}{C_p}}\\ &=\frac{M_1+M_2}{\displaystyle\frac{M_1}{R_1C_1}+\frac{M_2}{R_2C_2}}=\frac{M_1+M_2}{\displaystyle\frac{M_1}{T_1}+\frac{M_2}{T_2}}\\ \\ &=\frac{T_1T_2(M_1+M_2)}{T_1M_2+T_2M_1} \end{aligned} T=RC=R1+R2R1R2g(M1+M2)Cp=R11Cpg+R21CpgM1+M2=R1C1M1+R2C2M2M1+M2=T1M1+T2M2M1+M2=T1M2+T2M1T1T2(M1+M2)

Example 2.10

在下图所示的齿轮系中, z 1 , z 2 , z 3 , z 4 z_1,z_2,z_3,z_4 z1z2z3z4分别为齿轮的齿数; J 1 , J 2 , J 3 J_1,J_2,J_3 J1J2J3分别为齿轮和轴( J 3 J_3 J3中包括负载)的转动惯量; θ 1 , θ 2 , θ 3 \theta_1,\theta_2,\theta_3 θ1θ2θ3分别为各齿轮轴角位移; M m M_m Mm是电动机输出转矩;列写折算到电动机轴上的齿轮系运动方程(忽略各级黏性摩擦)。
6
解:

由上图可得:
M m = J 1 d 2 θ 1 d t 2 + J 2 d 2 θ 2 d t 2 + J 3 d 2 θ 3 d t 2 M_m=J_1\frac{d^2\theta_1}{dt^2}+J_2\frac{d^2\theta_2}{dt^2}+J_3\frac{d^2\theta_3}{dt^2} Mm=J1dt2d2θ1+J2dt2d2θ2+J3dt2d2θ3
根据齿轮轴角位移与齿数的关系可得:
θ 1 θ 2 = z 2 z 1 , θ 1 θ 3 = θ 1 θ 2 ⋅ θ 2 θ 3 = z 2 z 1 ⋅ z 4 z 3 \frac{\theta_1}{\theta_2}=\frac{z_2}{z_1},\frac{\theta_1}{\theta_3}=\frac{\theta_1}{\theta_2}·\frac{\theta_2}{\theta_3}=\frac{z_2}{z_1}·\frac{z_4}{z_3} θ2θ1=z1z2θ3θ1=θ2θ1θ3θ2=z1z2z3z4
即:
θ 2 = z 1 z 2 θ 1 , θ 3 = z 1 z 2 ⋅ z 3 z 4 θ 1 \theta_2=\frac{z_1}{z_2}\theta_1,\theta_3=\frac{z_1}{z_2}·\frac{z_3}{z_4}\theta_1 θ2=z2z1θ1θ3=z2z1z4z3θ1
则电动机轴上的齿轮系运动方程为:
M m = J 1 d 2 θ 1 d t 2 + J 2 ( z 1 z 2 ) 2 d 2 θ 1 d t 2 + J 3 ( z 1 z 2 ⋅ z 3 z 4 ) 2 d 2 θ 1 d t 2 M_m=J_1\frac{d^2\theta_1}{dt^2}+J_2(\frac{z_1}{z_2})^2\frac{d^2\theta_1}{dt^2}+J_3(\frac{z_1}{z_2}·\frac{z_3}{z_4})^2\frac{d^2\theta_1}{dt^2} Mm=J1dt2d2θ1+J2(z2z1)2dt2d2θ1+J3(z2z1z4z3)2dt2d2θ1

猜你喜欢

转载自blog.csdn.net/qq_39032096/article/details/127338303