CP-lecture07-Noise

Outline

  • Sensor noise.
  • Noise calibration.
  • Optimal weights for HDR

Sensor Noise

Note: we will only consider per-pixel noise. We won’t consider cross-pixel effects such as blooming , smearing, cross-talk…

Where does the noise come from

Poisson distribution

  • discrete
  • single parameter λ \lambda λ
  • function:
    N ∼ P o i s s o n ( λ )    ⟺    P ( N = k ; λ ) = λ k e − λ k ! N \sim Poisson(\lambda) \iff P(N=k;\lambda)=\dfrac{\lambda^ke^{-\lambda}}{k!} NPoisson(λ)P(N=k;λ)=k!λkeλ
  • mean: μ ( N ) = λ \mu(N) = \lambda μ(N)=λ
  • variance: σ ( N ) 2 = λ \sigma(N)^2 = \lambda σ(N)2=λ
  • N 1 ∼ P o i s s o n ( λ 1 ) , N 2 ∼ P o i s s o n ( λ 2 ) ⇒ N 1 + N 2 ∼ P o i s s o n ( λ 1 + λ 2 ) N_1 \sim Poisson(\lambda_1), N_2 \sim Poisson(\lambda_2) \Rightarrow N_1 + N_2 \sim Poisson(\lambda_1 + \lambda_2) N1Poisson(λ1),N2Poisson(λ2)N1+N2Poisson(λ1+λ2)

Photon Noise

A consequence of the discrete (quantum) nature of light. (将光视为光粒子的概率分布)

  • Photon detections are independent random events.
  • Total number of detections is Poisson distributed.
  • Also known as shot noise and Schott noise.、
    Depends on scene flux and exposure

Dark Noise

  • Electrons(dark current) are randomly released without any photons.
  • Total number of detections is Poisson distributed.
  • Increases exponentially with sensor temperature (+6°C ≈ doubling) → \rightarrow cool the sensor to mitigate it
    Depends on exposure but not on scene

Read and ADC Noise (Additive Noise)

A consequence of random voltage fluctuations before and after amplifier.

  • Both are independent of scene and exposure.
  • Both are normally (zero-mean Guassian) distributed.
  • ADC noise includes quantization errors.

Summary

noises

Noise Distrbution Gain Dependence
Photon Noise ∼ Poisson [ t α Φ ] \sim\text{Poisson}[t\alpha\Phi] Poisson[tαΦ] ⋅ g \cdot g g scene, exposure, ISO
Dark Noise ∼ Poisson [ t D ] \sim\text{Poisson}[tD] Poisson[tD] ⋅ g \cdot g g temperature, exposure, ISO
Read Noise ∼ Normal ( 0 , σ read ) \sim\text{Normal}(0, \sigma_\text{read}) Normal(0,σread) ⋅ g \cdot g g ISO
ADC Noise ∼ Normal ( 0 , σ ADC ) \sim\text{Normal}(0, \sigma_\text{ADC}) Normal(0,σADC)

Affine noise model

L = N photon + N dark ∼ Poisson ( t ( α Φ + D ) ) N add = g N read + N ADC ∼ Normal ( 0 , g 2 σ read 2 + σ ADC 2 ) ⟹ I = g L + N add E ( I ) = t ( a Φ + D ) g σ ( I ) 2 = t ( a Φ + D ) g 2 + σ read 2 g 2 + σ ADC 2 \begin{aligned} & L = N_\text{photon} + N_\text{dark} \sim \text{Poisson}(t(\alpha\Phi+D)) \\ & N_\text{add} = gN_\text{read} + N_\text{ADC} \sim \text{Normal}\left(0, \sqrt{g^2\sigma_\text{read}^2 + \sigma_\text{ADC}^2}\right) \\ \Longrightarrow & I = gL + N_\text{add} \\ & E(I) = t(a\Phi+D)g \\ & \sigma(I)^2 = t(a\Phi+D)g^2 + \sigma_{\text{read}}^2 g^2+ \sigma_{\text{ADC}}^2 \end{aligned} L=Nphoton+NdarkPoisson(t(αΦ+D))Nadd=gNread+NADCNormal(0,g2σread2+σADC2 )I=gL+NaddE(I)=t(aΦ+D)gσ(I)2=t(aΦ+D)g2+σread2g2+σADC2

noise regimes

Regime Dominant Noise Notes
bright pixels photon noise scene-dependent
dark pixels read and ADC noise scene-independent
high ISO photon and read noise pre-gain
low ISO ADC noise post-gain
long exposures dark noise thermal-dependent

Signal-to-noise ratio (SNR)

Variance is an absolute measure of the (squared) magnitude of noise:
σ ( I ) 2 = E ( ( I − E ( I ) ) 2 ) = E ( I 2 ) − E ( I ) 2 \sigma(I)^2 = E \left( \left( I-E(I) \right)^2 \right) = E(I^2) - E(I)^2 σ(I)2=E((IE(I))2)=E(I2)E(I)2

SNR is a relative measure of the (inverse squared) magnitude of noise:

SNR = E ( I ) 2 σ ( I ) 2 \text{SNR} = \frac{E(I)^2}{\sigma(I)^2} SNR=σ(I)2E(I)2

Noise calibration

Estimate the dark current D D D

capture multiple images with the sensor completely blocked and average to form the dark frame

Estimate the gain and additive noise variance

Optimal weights for HDR merging

to be continued

reference:

猜你喜欢

转载自blog.csdn.net/w112348/article/details/113806857
cp