基于Fisher准则线性分类器设计

已知有两类数据 \omega _{1} 和 \omega _{2}二者的概率已知 p(\omega _{1})=0.6p(\omega _{2})=0.4

\omega _{1} 中数据点的坐标对应一一如下:

x_{1} =[0.2331 1.5207 0.6499 0.7757 1.0524 1.1974
       0.2908 0.2518 0.6682 0.5622 0.9023 0.1333
       -0.5431 0.9407 -0.2126 0.0507 -0.0810 0.7315
       0.3345 1.0650 -0.0247 0.1043 0.3122 0.6655
       0.5838 1.1653 1.2653 0.8137 -0.3399 0.5152
       0.7226 -0.2015 0.4070 -0.1717 -1.0573 -0.2099];

x_{2} =[2.3385 2.1946 1.6730 1.6365 1.7844 2.0155
        2.0681 2.1213 2.4797 1.5118 1.9692 1.8340
        1.8704 2.2948 1.7714 2.3939 1.5648 1.9329
        2.2027 2.4568 1.7523 1.6991 2.4883 1.7259
        2.0466 2.0226 2.3757 1.7987 2.0828 2.0798
        1.9449 2.3801 2.2373 2.1614 1.9235 2.2604];

x_{3} =[0.5338 0.8514 1.0831 0.4164 1.1176 0.5536
        0.6071 0.4439 0.4928 0.5901 1.0927 1.0756
        1.0072 0.4272 0.4353 0.9869 0.4841 1.0992
        1.0299 0.7127 1.0124 0.4576 0.8544 1.1275
        0.7705 0.4129 1.0085 0.7676 0.8418 0.8784
        0.9751 0.7840 0.4158 1.0315 0.7533 0.9548];

\omega _{2} 数据点的对应的三维坐标为

x_{4} =[1.4010 1.2301 2.0814 1.1655 1.3740 1.1829
        1.7632 1.9739 2.4152 2.5890 2.8472 1.9539
        1.2500 1.2864 1.2614 2.0071 2.1831 1.7909
        1.3322 1.1466 1.7087 1.5920 2.9353 1.4664
        2.9313 1.8349 1.8340 2.5096 2.7198 2.3148
        2.0353 2.6030 1.2327 2.1465 1.5673 2.9414];

x_{5} =[1.0298 0.9611 0.9154 1.4901 0.8200 0.9399
        1.1405 1.0678 0.8050 1.2889 1.4601 1.4334
        0.7091 1.2942 1.3744 0.9387 1.2266 1.1833
        0.8798 0.5592 0.5150 0.9983 0.9120 0.7126
        1.2833 1.1029 1.2680 0.7140 1.2446 1.3392
        1.1808 0.5503 1.4708 1.1435 0.7679 1.1288];

x_{6} =[0.6210 1.3656 0.5498 0.6708 0.8932 1.4342
        0.9508 0.7324 0.5784 1.4943 1.0915 0.7644
        1.2159 1.3049 1.1408 0.9398 0.6197 0.6603
        1.3928 1.4084 0.6909 0.8400 0.5381 1.3729
        0.7731 0.7319 1.3439 0.8142 0.9586 0.7379
        0.7548 0.7393 0.6739 0.8651 1.3699 1.1458];

数据的样本点分布如下图:

1、请把数据作为样本,根据 Fisher 选择投影方向 W 的原则,使原样本向量在该方向上的投影能兼顾类间分布尽可能分开,类内样本投影尽可能密集的要求,求出评价投影方向 W 的函数,并在图形表示出来。并在实验报告中表示出来,并求使 J_{F}(\omega ) 取极大值的 \omega ^{*}。用 matlab 完成 Fisher 线性分类器的设计,程序的语句要求有注释。

2、根据上述的结果并判断 (1,1.5,0.6) (1.2,1.0,0.55) (2.0,0.9,0.68) (1.2,1.5,0.89) (0.23,2.33,1.43),属于哪个类别,并画出数据分类相应的结果图,要求画出其在 W 上的投影。

实验程序

function fisher
%w1中数据点的坐标
x1 =[0.2331    1.5207    0.6499    0.7757    1.0524    1.1974
    0.2908    0.2518    0.6682    0.5622    0.9023    0.1333
   -0.5431    0.9407   -0.2126    0.0507   -0.0810    0.7315
    0.3345    1.0650   -0.0247    0.1043    0.3122    0.6655
    0.5838    1.1653    1.2653    0.8137   -0.3399    0.5152
    0.7226   -0.2015    0.4070   -0.1717   -1.0573   -0.2099];
x2 =[2.3385    2.1946    1.6730    1.6365    1.7844    2.0155
    2.0681    2.1213    2.4797    1.5118    1.9692    1.8340
    1.8704    2.2948    1.7714    2.3939    1.5648    1.9329
    2.2027    2.4568    1.7523    1.6991    2.4883    1.7259
    2.0466    2.0226    2.3757    1.7987    2.0828    2.0798
    1.9449    2.3801    2.2373    2.1614    1.9235    2.2604];
x3 =[0.5338    0.8514    1.0831    0.4164    1.1176    0.5536
    0.6071    0.4439    0.4928    0.5901    1.0927    1.0756
    1.0072    0.4272    0.4353    0.9869    0.4841    1.0992
    1.0299    0.7127    1.0124    0.4576    0.8544    1.1275
    0.7705    0.4129    1.0085    0.7676    0.8418    0.8784
0.9751    0.7840    0.4158    1.0315    0.7533    0.9548];
%将x1、x2、x3变为行向量
x1=x1(:);
x2=x2(:);
x3=x3(:);
%计算第一类的样本均值向量m1
m1(1)=mean(x1);
m1(2)=mean(x2);
m1(3)=mean(x3);
%计算第一类样本类内离散度矩阵S1
S1=zeros(3,3);
for i=1:36
    S1=S1+[-m1(1)+x1(i) -m1(2)+x2(i) -m1(3)+x3(i)]'*[-m1(1)+x1(i) -m1(2)+x2(i) -m1(3)+x3(i)];
end
%w2的数据点坐标
x4 =[1.4010    1.2301    2.0814    1.1655    1.3740    1.1829
    1.7632    1.9739    2.4152    2.5890    2.8472    1.9539
    1.2500    1.2864    1.2614    2.0071    2.1831    1.7909
    1.3322    1.1466    1.7087    1.5920    2.9353    1.4664
    2.9313    1.8349    1.8340    2.5096    2.7198    2.3148
    2.0353    2.6030    1.2327    2.1465    1.5673    2.9414];

x5 =[1.0298    0.9611    0.9154    1.4901    0.8200    0.9399
    1.1405    1.0678    0.8050    1.2889    1.4601    1.4334
    0.7091    1.2942    1.3744    0.9387    1.2266    1.1833
    0.8798    0.5592    0.5150    0.9983    0.9120    0.7126
    1.2833    1.1029    1.2680    0.7140    1.2446    1.3392
    1.1808    0.5503    1.4708    1.1435    0.7679    1.1288];
x6 =[0.6210    1.3656    0.5498    0.6708    0.8932    1.4342
    0.9508    0.7324    0.5784    1.4943    1.0915    0.7644
    1.2159    1.3049    1.1408    0.9398    0.6197    0.6603
    1.3928    1.4084    0.6909    0.8400    0.5381    1.3729
    0.7731    0.7319    1.3439    0.8142    0.9586    0.7379
    0.7548    0.7393    0.6739    0.8651    1.3699    1.1458];
x4=x4(:);
x5=x5(:);
x6=x6(:);
%计算第二类的样本均值向量m2
m2(1)=mean(x4);
m2(2)=mean(x5);
m2(3)=mean(x6);
%计算第二类样本类内离散度矩阵S2
S2=zeros(3,3);
for i=1:36
    S2=S2+[-m2(1)+x4(i) -m2(2)+x5(i) -m2(3)+x6(i)]'*[-m2(1)+x4(i) -m2(2)+x5(i) -m2(3)+x6(i)];
end

%总类内离散度矩阵Sw
Sw=zeros(3,3);
Sw=S1+S2;
%样本类间离散度矩阵Sb
Sb=zeros(3,3);
Sb=(m1-m2)'*(m1-m2);
%最优解W
W=Sw^-1*(m1-m2)'
%将W变为单位向量以方便计算投影
W=W/sqrt(sum(W.^2));
%计算一维Y空间中的各类样本均值M1及M2
for i=1:36
    y(i)=W'*[x1(i) x2(i) x3(i)]';
end
M1=mean(y)
for i=1:36
    y(i)=W'*[x4(i) x5(i) x6(i)]';
end
M2=mean(y)
%利用当P(w1)与P(w2)已知时的公式计算W0
p1=0.6;p2=0.4;
W0=-(M1+M2)/2+(log(p2/p1))/(36+36-2);
%计算将样本投影到最佳方向上以后的新坐标 
X1=[x1*W(1)+x2*W(2)+x3*W(3)]';
X2=[x4*W(1)+x5*W(2)+x6*W(3)]';%得到投影长度
XX1=[W(1)*X1;W(2)*X1;W(3)*X1];
XX2=[W(1)*X2;W(2)*X2;W(3)*X2];%得到新坐标
%绘制样本点
figure(1)
plot3(x1,x2,x3,'r*') %第一类
hold on
plot3(x4,x5,x6,'bp') %第二类
legend('第一类点','第二类点')
title('Fisher线性判别曲线')
W1=5*W; 
%画出最佳方向 
line([-W1(1),W1(1)],[-W1(2),W1(2)],[-W1(3),W1(3)],'color','b'); 
%判别已给点的分类 
a1=[1,1.5,0.6]';a2=[1.2,1.0,0.55]';a3=[2.0,0.9,0.68]';a4=[1.2,1.5,0.89]';a5=[0.23,2.33,1.43]';
A=[a1 a2 a3 a4 a5]
n=size(A,2);                      
%下面代码在改变样本时都不必修改
%绘制待测数据投影到最佳方向上的点
for k=1:n    
    A1=A(:,k)'*W;
    A11=W*A1;%得到待测数据投影
    y=W'*A(:,k)+W0;%计算后与0相比以判断类别,大于0为第一类,小于0为第二类            
    if y>0
        plot3(A(1,k),A(2,k),A(3,k),'go'); %点为"rp"对应第一类 
        plot3(A11(1),A11(2),A11(3),'go'); %投影为"r+"对应go类
    else 
        plot3(A(1,k),A(2,k),A(3,k),'m+'); %点为"bh"对应m+类
        plot3(A11(1),A11(2),A11(3),'m+'); %投影为"b*"对应m+类
    end
end
%画出最佳方向 
line([-W1(1),W1(1)],[-W1(2),W1(2)],[-W1(3),W1(3)],'color','k'); 
view([-37.5,30]);
axis([-2,3,-1,3,-0.5,1.5]);
grid on
hold off

猜你喜欢

转载自blog.csdn.net/IT_charge/article/details/112688629