Jacobi符号的定义和基本性质

索引

前言

  本文与博文《Legendre符号的定义和基本性质》有一定的内在关联性。

定义

  设 m ∈ Z > 1 m\in { {\mathbb{Z}}_{>1}} mZ>1是奇数, m = p 1 p 2 ⋯ p r m={ {p}_{1}}{ {p}_{2}}\cdots { {p}_{r}} m=p1p2pr,其中 ∀ i \forall i i p i { {p}_{i}} pi素数(也是奇素数),且可以重复; a ∈ Z a\in \mathbb{Z} aZ。定义 a a a m m m的Jacobi符号为 ( a m ) \left( \frac{a}{m} \right) (ma)
( a m ) = ( a p 1 ) ( a p 2 ) ⋯ ( a p r ) \left( \frac{a}{m} \right)=\left( \frac{a}{ { {p}_{1}}} \right)\left( \frac{a}{ { {p}_{2}}} \right)\cdots \left( \frac{a}{ { {p}_{r}}} \right) (ma)=(p1a)(p2a)(pra)
其中 ( a p i ) \left( \frac{a}{ { {p}_{i}}} \right) (pia) a a a对奇素数 p i { {p}_{i}} pi的Legendre符号。


  整数 a a a m m m的Jacobi符号 ( a m ) \left( \frac{a}{m} \right) (ma)中,只要求 m m m是大于 1 1 1的奇数,而没有和Legendre符号一样要求 m m m是素数。这是使用Jacobi符号的一个优势。

基本性质

  设 m ∈ Z > 1 m\in { {\mathbb{Z}}_{>1}} mZ>1是奇数, m = p 1 p 2 ⋯ p r m={ {p}_{1}}{ {p}_{2}}\cdots { {p}_{r}} m=p1p2pr,其中 ∀ i \forall i i p i { {p}_{i}} pi是素数(也是奇素数), a , b ∈ Z a,b\in \mathbb{Z} a,bZ

1. ( 1 m ) = 1 \left( \frac{1}{m} \right)=1 (m1)=1

证明
( 1 m ) = ( 1 p 1 ) × ( 1 p 2 ) × ⋯ × ( 1 p r ) = 1 × 1 × ⋯ × 1 = 1 \left( \frac{1}{m} \right)=\left( \frac{1}{ { {p}_{1}}} \right)\times \left( \frac{1}{ { {p}_{2}}} \right)\times \cdots \times \left( \frac{1}{ { {p}_{r}}} \right)=1\times 1\times \cdots \times 1=1 (m1)=(p11)×(p21)××(pr1)=1×1××1=1

2. ( − 1 m ) = ( − 1 ) m − 1 2 = { 1 ,   m ≡ 1     m o d   4 − 1 ,   m ≡ 3     m o d   4 \left( \frac{-1}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}}}=\left\{ \begin{aligned} & 1,\text{ }m\equiv 1\text{ }\bmod 4 \\ & -1,\text{ }m\equiv 3\text{ }\bmod 4 \\ \end{aligned} \right. (m1)=(1)2m1={ 1, m1 mod41, m3 mod4

证明

  1. 第一步,先证明若 p 1 , p 2 , ⋯   , p r { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{r}} p1,p2,,pr是奇数,则 p 1 − 1 2 + p 2 − 1 2 + ⋯ + p r − 1 2 ≡ ( ∏ i = 1 r p i ) − 1 2 ≡ m − 1 2     m o d   2 \frac{ { {p}_{1}}-1}{2}+\frac{ { {p}_{2}}-1}{2}+\cdots +\frac{ { {p}_{r}}-1}{2}\equiv \frac{\left( \prod\limits_{i=1}^{r}{ { {p}_{i}}}\right) -1}{2}\equiv \frac{m-1}{2}\text{ }\bmod 2 2p11+2p21++2pr12(i=1rpi)12m1 mod2
    s = 1 s=1 s=1时,显然有
    p 1 − 1 2 ≡ p 1 − 1 2     m o d   2 \frac{ { {p}_{1}}-1}{2}\equiv \frac{ { {p}_{1}}-1}{2}\text{ }\bmod 2 2p112p11 mod2
    假设 ∑ i = 1 s p i − 1 2 ≡ ( ∏ i = 1 s p i ) − 1 2     m o d   2 \sum\limits_{i=1}^{s}{\frac{ { {p}_{i}}-1}{2}}\equiv \frac{\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1}{2}\text{ }\bmod 2 i=1s2pi12(i=1spi)1 mod2,考虑 ( ∏ i = 1 s + 1 p i ) − 1 2 − ∑ i = 1 s + 1 p i − 1 2 \frac{\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)-1}{2}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}-1}{2}} 2(i=1s+1pi)1i=1s+12pi1
    ( ∏ i = 1 s + 1 p i ) − 1 2 − ∑ i = 1 s + 1 p i − 1 2 = p s + 1 ( ∏ i = 1 s p i ) − 1 2 − ( ∑ i = 1 s p i − 1 2 ) − p s + 1 − 1 2 ≡ p s + 1 ( ∏ i = 1 s p i ) − 1 2 − ( ∏ i = 1 s p i ) − 1 2 − p s + 1 − 1 2     m o d   2 = p s + 1 ( ∏ i = 1 s p i ) − ( ∏ i = 1 s p i ) − p s + 1 + 1 2 = ( ( ∏ i = 1 s p i ) − 1 ) ( p s + 1 − 1 ) 2 \begin{aligned} & \frac{\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)-1}{2}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}-1}{2}} \\ & =\frac{ { {p}_{s+1}}\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1}{2}-\left( \sum\limits_{i=1}^{s}{\frac{ { {p}_{i}}-1}{2}} \right)-\frac{ { {p}_{s+1}}-1}{2} \\ & \equiv \frac{ { {p}_{s+1}}\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1}{2}-\frac{\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1}{2}-\frac{ { {p}_{s+1}}-1}{2}\text{ }\bmod 2 \\ & =\frac{ { {p}_{s+1}}\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-{ {p}_{s+1}}+1}{2} \\ & =\frac{\left( \left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1 \right)\left( { {p}_{s+1}}-1 \right)}{2} \\ \end{aligned} 2(i=1s+1pi)1i=1s+12pi1=2ps+1(i=1spi)1(i=1s2pi1)2ps+112ps+1(i=1spi)12(i=1spi)12ps+11 mod2=2ps+1(i=1spi)(i=1spi)ps+1+1=2((i=1spi)1)(ps+11)
    由于 ∀ i ∈ { 1 , 2 , ⋯   , s + 1 } \forall i\in \left\{ 1,2,\cdots ,s+1 \right\} i{ 1,2,,s+1} p i { {p}_{i}} pi是奇数,因此 ∏ i = 1 s p i ,   p s + 1 \prod\limits_{i=1}^{s}{ { {p}_{i}}},\text{ }{ {p}_{s+1}} i=1spi, ps+1也是奇数, ( ∏ i = 1 s p i ) − 1 ,   p s + 1 − 1 \left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1,\text{ }{ {p}_{s+1}}-1 (i=1spi)1, ps+11均为偶数, ( ( ∏ i = 1 s p i ) − 1 ) ( p s + 1 − 1 ) \left( \left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1 \right)\left( { {p}_{s+1}}-1 \right) ((i=1spi)1)(ps+11)的素因子分解形式中存在素因子 2 2 2且其指数至少为 2 2 2,因此有
    ( ∏ i = 1 s + 1 p i ) − 1 2 − ∑ i = 1 s + 1 p i − 1 2 ≡ ( ( ∏ i = 1 s p i ) − 1 ) ( p s + 1 − 1 ) 2 ≡ 0     m o d   2 ⇒ ∑ i = 1 s + 1 p i − 1 2 ≡ ( ∏ i = 1 s + 1 p i ) − 1 2     m o d   2 \begin{aligned} & \frac{\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)-1}{2}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}-1}{2}}\equiv \frac{\left( \left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)-1 \right)\left( { {p}_{s+1}}-1 \right)}{2}\equiv 0\text{ }\bmod 2 \\ & \\ & \Rightarrow \sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}-1}{2}}\equiv \frac{\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)-1}{2}\text{ }\bmod 2 \\ \end{aligned} 2(i=1s+1pi)1i=1s+12pi12((i=1spi)1)(ps+11)0 mod2i=1s+12pi12(i=1s+1pi)1 mod2
    由第一数学归纳法,结论得证。

  2. 基于上面的结论, ∃ k ∈ Z ,  s.t. \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{.} kZ, s.t.
    m − 1 2 = ( ∏ i = 1 r p i ) − 1 2 = 2 k + ∑ i = 1 r p i − 1 2 \frac{m-1}{2}=\frac{\left( \prod\limits_{i=1}^{r}{ { {p}_{i}}} \right)-1}{2}=2k+\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}} 2m1=2(i=1rpi)1=2k+i=1r2pi1
    因此有
    ( − 1 m ) = ( − 1 p 1 ) ( − 1 p 2 ) ⋯ ( − 1 p r ) = ( − 1 ) p 1 − 1 2 ( − 1 ) p 2 − 1 2 ⋯ ( − 1 ) p r − 1 2 = ( − 1 ) ∑ i = 1 r p i − 1 2 = ( − 1 ) ∑ i = 1 r p i − 1 2 + 2 k = ( − 1 ) m − 1 2 \begin{aligned} & \left( \frac{-1}{m} \right)=\left( \frac{-1}{ { {p}_{1}}} \right)\left( \frac{-1}{ { {p}_{2}}} \right)\cdots \left( \frac{-1}{ { {p}_{r}}} \right) \\ & ={ {\left( -1 \right)}^{\frac{ { {p}_{1}}-1}{2}}}{ {\left( -1 \right)}^{\frac{ { {p}_{2}}-1}{2}}}\cdots { {\left( -1 \right)}^{\frac{ { {p}_{r}}-1}{2}}} \\ & ={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}}}} \\ & ={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}}+2k}} \\ & ={ {\left( -1 \right)}^{\frac{m-1}{2}}} \\ \end{aligned} (m1)=(p11)(p21)(pr1)=(1)2p11(1)2p21(1)2pr1=(1)i=1r2pi1=(1)i=1r2pi1+2k=(1)2m1

  3. 由于 m m m是奇数,所以只存在 m ≡ 1     m o d   4 m\equiv 1\text{ }\bmod 4 m1 mod4 m ≡ 3     m o d   4 m\equiv 3\text{ }\bmod 4 m3 mod4两种情况。

    1. m ≡ 1     m o d   4 m\equiv 1\text{ }\bmod 4 m1 mod4时, ∃ k ∈ Z ,  s.t.  m = 4 k + 1 \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{. }m=4k+1 kZ, s.tm=4k+1。此时
      ( − 1 m ) = ( − 1 ) m − 1 2 = ( − 1 ) 4 k + 1 − 1 2 = ( − 1 ) 2 k = 1 \left( \frac{-1}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}}}={ {\left( -1 \right)}^{\frac{4k+1-1}{2}}}={ {\left( -1 \right)}^{2k}}=1 (m1)=(1)2m1=(1)24k+11=(1)2k=1
    2. m ≡ 3     m o d   4 m\equiv 3\text{ }\bmod 4 m3 mod4时, ∃ k ∈ Z ,  s.t.  m = 4 k + 3 \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{. }m=4k+3 kZ, s.tm=4k+3。此时
      ( − 1 m ) = ( − 1 ) m − 1 2 = ( − 1 ) 4 k + 3 − 1 2 = ( − 1 ) 2 k + 1 = − 1 \left( \frac{-1}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}}}={ {\left( -1 \right)}^{\frac{4k+3-1}{2}}}={ {\left( -1 \right)}^{2k+1}}=-1 (m1)=(1)2m1=(1)24k+31=(1)2k+1=1

3. 若 a ≡ b     m o d   m a\equiv b\text{ }\bmod m ab modm,则 ( a m ) = ( b m ) \left( \frac{a}{m} \right)=\left( \frac{b}{m} \right) (ma)=(mb)

证明
( a m ) = ( a p 1 ) ( a p 2 ) ⋯ ( a p r ) = ( b p 1 ) ( b p 2 ) ⋯ ( b p r ) = ( b m ) \left( \frac{a}{m} \right)=\left( \frac{a}{ { {p}_{1}}} \right)\left( \frac{a}{ { {p}_{2}}} \right)\cdots \left( \frac{a}{ { {p}_{r}}} \right)=\left( \frac{b}{ { {p}_{1}}} \right)\left( \frac{b}{ { {p}_{2}}} \right)\cdots \left( \frac{b}{ { {p}_{r}}} \right)=\left( \frac{b}{m} \right) (ma)=(p1a)(p2a)(pra)=(p1b)(p2b)(prb)=(mb)

4-1. ( a b m ) = ( a m ) ( b m ) \left( \frac{ab}{m} \right)=\left( \frac{a}{m} \right)\left( \frac{b}{m} \right) (mab)=(ma)(mb)

证明
( a b m ) = ( a b p 1 ) × ( a b p 2 ) × ⋯ × ( a b p r ) = ( ( a p 1 ) ( b p 1 ) ) × ( ( a p 2 ) ( b p 2 ) ) × ⋯ × ( ( a p r ) ( b p r ) ) = ( ( a p 1 ) ( a p 2 ) ⋯ ( a p r ) ) × ( ( b p 1 ) ( b p 2 ) ⋯ ( b p r ) ) = ( a m ) × ( b m ) \begin{aligned} & \left( \frac{ab}{m} \right)=\left( \frac{ab}{ { {p}_{1}}} \right)\times \left( \frac{ab}{ { {p}_{2}}} \right)\times \cdots \times \left( \frac{ab}{ { {p}_{r}}} \right) \\ & =\left( \left( \frac{a}{ { {p}_{1}}} \right)\left( \frac{b}{ { {p}_{1}}} \right) \right)\times \left( \left( \frac{a}{ { {p}_{2}}} \right)\left( \frac{b}{ { {p}_{2}}} \right) \right)\times \cdots \times \left( \left( \frac{a}{ { {p}_{r}}} \right)\left( \frac{b}{ { {p}_{r}}} \right) \right) \\ & =\left( \left( \frac{a}{ { {p}_{1}}} \right)\left( \frac{a}{ { {p}_{2}}} \right)\cdots \left( \frac{a}{ { {p}_{r}}} \right) \right)\times \left( \left( \frac{b}{ { {p}_{1}}} \right)\left( \frac{b}{ { {p}_{2}}} \right)\cdots \left( \frac{b}{ { {p}_{r}}} \right) \right) \\ & =\left( \frac{a}{m} \right)\times \left( \frac{b}{m} \right) \\ \end{aligned} (mab)=(p1ab)×(p2ab)××(prab)=((p1a)(p1b))×((p2a)(p2b))××((pra)(prb))=((p1a)(p2a)(pra))×((p1b)(p2b)(prb))=(ma)×(mb)

4-2. ( ∏ i = 1 n a i m ) = ∏ i = 1 n ( a i m ) \left( \frac{\prod\limits_{i=1}^{n}{ { {a}_{i}}}}{m} \right)=\prod\limits_{i=1}^{n}{\left( \frac{ { {a}_{i}}}{m} \right)} mi=1nai=i=1n(mai)

证明
  思想同4-1。

5. 若 gcd ⁡ ( b , m ) = 1 \gcd \left( b,m \right)=1 gcd(b,m)=1,则 ( a b 2 m ) = ( a m ) \left( \frac{a{ {b}^{2}}}{m} \right)=\left( \frac{a}{m} \right) (mab2)=(ma)

证明
gcd ⁡ ( b , m ) = 1 m = p 1 p 2 ⋯ p r } ⇒ ∀ i ,   gcd ⁡ ( b , p i ) = 1 ⇒ ∀ i ,   p i ∣ b ⇒ ( b p i ) = ± 1 ,   ( b p i ) 2 = 1 \begin{aligned} & \left. \begin{aligned} & \gcd \left( b,m \right)=1 \\ & m={ {p}_{1}}{ {p}_{2}}\cdots { {p}_{r}} \\ \end{aligned} \right\}\Rightarrow \forall i,\text{ }\gcd \left( b,{ {p}_{i}} \right)=1 \\ & \Rightarrow \forall i,\text{ }{ {p}_{i}}\cancel{|}b \\ & \Rightarrow \left( \frac{b}{ { {p}_{i}}} \right)=\pm 1,\text{ }{ {\left( \frac{b}{ { {p}_{i}}} \right)}^{2}}=1 \\ \end{aligned} gcd(b,m)=1m=p1p2pr}i, gcd(b,pi)=1i, pi b(pib)=±1, (pib)2=1
基于此,有
( a b 2 m ) = ( a m ) ( b m ) 2 = ( a m ) × 1 = ( a m ) \left( \frac{a{ {b}^{2}}}{m} \right)=\left( \frac{a}{m} \right){ {\left( \frac{b}{m} \right)}^{2}}=\left( \frac{a}{m} \right)\times 1=\left( \frac{a}{m} \right) (mab2)=(ma)(mb)2=(ma)×1=(ma)

6. ( 2 m ) = ( − 1 ) m 2 − 1 8 = { 1 ,   m ≡ ± 1     m o d   8 − 1 ,   m ≡ ± 3     m o d   8 \left( \frac{2}{m} \right)={ {\left( -1 \right)}^{\frac{ { {m}^{2}}-1}{8}}}=\left\{ \begin{aligned}& 1,\text{ }m\equiv \pm 1\text{ }\bmod 8 \\ & -1,\text{ }m\equiv \pm 3\text{ }\bmod 8 \\ \end{aligned} \right. (m2)=(1)8m21={ 1, m±1 mod81, m±3 mod8

证明

  1. 第一步,先证明若 p 1 , p 2 , ⋯   , p r { {p}_{1}},{ {p}_{2}},\cdots ,{ {p}_{r}} p1,p2,,pr是奇数,则
    p 1 2 − 1 8 + p 2 2 − 1 8 + ⋯ + p r 2 − 1 8 ≡ ( ∏ i = 1 r p i ) 2 − 1 8     m o d   2 \frac{ { {p}_{1}}^{2}-1}{8}+\frac{ { {p}_{2}}^{2}-1}{8}+\cdots +\frac{ { {p}_{r}}^{2}-1}{8}\equiv \frac{ { {\left( \prod\limits_{i=1}^{r}{ { {p}_{i}}} \right)}^{2}}-1}{8}\text{ }\bmod 2 8p121+8p221++8pr218(i=1rpi)21 mod2
    s = 1 s=1 s=1时,显然有
    p 1 2 − 1 8 ≡ p 1 2 − 1 8     m o d   2 \frac{ { {p}_{1}}^{2}-1}{8}\equiv \frac{ { {p}_{1}}^{2}-1}{8}\text{ }\bmod 2 8p1218p121 mod2
    假设 ∑ i = 1 s p i 2 − 1 8 ≡ ( ∏ i = 1 s p i ) 2 − 1 8     m o d   2 \sum\limits_{i=1}^{s}{\frac{ { {p}_{i}}^{2}-1}{8}}\equiv \frac{ { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1}{8}\text{ }\bmod 2 i=1s8pi218(i=1spi)21 mod2,考虑 ( ∏ i = 1 s + 1 p i ) 2 − 1 8 − ∑ i = 1 s + 1 p i 2 − 1 8 \frac{ { {\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}^{2}-1}{8}} 8(i=1s+1pi)21i=1s+18pi21
    ( ∏ i = 1 s + 1 p i ) 2 − 1 8 − ∑ i = 1 s + 1 p i 2 − 1 8 = p s + 1 2 ( ∏ i = 1 s p i ) 2 − 1 8 − ∑ i = 1 s p i 2 − 1 8 − p s + 1 2 − 1 8 ≡ p s + 1 2 ( ∏ i = 1 s p i ) 2 − 1 8 − ( ∏ i = 1 s p i ) 2 − 1 8 − p s + 1 2 − 1 8     m o d   2 = ( p s + 1 2 − 1 ) ( ( ∏ i = 1 s p i ) 2 − 1 ) 8 \begin{aligned} & \frac{ { {\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}^{2}-1}{8}} \\ & =\frac{ { {p}_{s+1}}^{2}{ {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\sum\limits_{i=1}^{s}{\frac{ { {p}_{i}}^{2}-1}{8}}-\frac{ { {p}_{s+1}}^{2}-1}{8} \\ & \equiv \frac{ { {p}_{s+1}}^{2}{ {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\frac{ { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\frac{ { {p}_{s+1}}^{2}-1}{8}\text{ }\bmod 2 \\ & =\frac{\left( { {p}_{s+1}}^{2}-1 \right)\left( { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1 \right)}{8} \\ \end{aligned} 8(i=1s+1pi)21i=1s+18pi21=8ps+12(i=1spi)21i=1s8pi218ps+1218ps+12(i=1spi)218(i=1spi)218ps+121 mod2=8(ps+121)((i=1spi)21)
    由于 ∀ i ∈ { 1 , 2 , ⋯   , s + 1 } \forall i\in \left\{ 1,2,\cdots ,s+1 \right\} i{ 1,2,,s+1} p i { {p}_{i}} pi是奇数,因此 ∏ i = 1 s p i ,   p s + 1 \prod\limits_{i=1}^{s}{ { {p}_{i}}},\text{ }{ {p}_{s+1}} i=1spi, ps+1也是奇数。再由于任意一个奇数 2 k + 1 2k+1 2k+1的平方满足
    ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 ≡ 1     m o d   4 { {\left( 2k+1 \right)}^{2}}=4{ {k}^{2}}+4k+1\equiv 1\text{ }\bmod 4 (2k+1)2=4k2+4k+11 mod4
    因此有
    p s + 1 2 − 1 ≡ 0     m o d   4 ( ∏ i = 1 s p i ) 2 − 1 ≡ 0     m o d   4 \begin{aligned} & { {p}_{s+1}}^{2}-1\equiv 0\text{ }\bmod 4 \\ & { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1\equiv 0\text{ }\bmod 4 \\ \end{aligned} ps+1210 mod4(i=1spi)210 mod4
    ( p s + 1 2 − 1 ) ( ( ∏ i = 1 s p i ) 2 − 1 ) \left( { {p}_{s+1}}^{2}-1 \right)\left( { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1 \right) (ps+121)((i=1spi)21)的素因子分解形式中存在素因子2且其指数至少为4,而 8 = 2 3 8={ {2}^{3}} 8=23,因此有
    ( ∏ i = 1 s + 1 p i ) 2 − 1 8 − ∑ i = 1 s + 1 p i 2 − 1 8 ≡ ( p s + 1 2 − 1 ) ( ( ∏ i = 1 s p i ) 2 − 1 ) 8 ≡ 0     m o d   2 ⇒ ∑ i = 1 s + 1 p i 2 − 1 8 ≡ ( ∏ i = 1 s + 1 p i ) 2 − 1 8     m o d   2 \begin{aligned} & \frac{ { {\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)}^{2}}-1}{8}-\sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}^{2}-1}{8}}\equiv \frac{\left( { {p}_{s+1}}^{2}-1 \right)\left( { {\left( \prod\limits_{i=1}^{s}{ { {p}_{i}}} \right)}^{2}}-1 \right)}{8}\equiv 0\text{ }\bmod 2 \\ & \\ & \Rightarrow \sum\limits_{i=1}^{s+1}{\frac{ { {p}_{i}}^{2}-1}{8}}\equiv \frac{ { {\left( \prod\limits_{i=1}^{s+1}{ { {p}_{i}}} \right)}^{2}}-1}{8}\text{ }\bmod 2 \\ \end{aligned} 8(i=1s+1pi)21i=1s+18pi218(ps+121)((i=1spi)21)0 mod2i=1s+18pi218(i=1s+1pi)21 mod2
    由第一数学归纳法,结论得证。

  2. 基于上面的结论, ∃ k ∈ Z ,  s.t. \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{.} kZ, s.t.
    m 2 − 1 8 = ( ∏ i = 1 r p i 2 ) − 1 8 = 2 k + ∑ i = 1 r p i 2 − 1 8 \frac{ { {m}^{2}}-1}{8}=\frac{\left( \prod\limits_{i=1}^{r}{ { {p}_{i}}^{2}} \right)-1}{8}=2k+\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}^{2}-1}{8}} 8m21=8(i=1rpi2)1=2k+i=1r8pi21
    因此有
    ( 2 m ) = ( 2 p 1 ) ( 2 p 2 ) ⋯ ( 2 p r ) = ( − 1 ) p 1 2 − 1 8 ( − 1 ) p 2 2 − 1 8 ⋯ ( − 1 ) p r 2 − 1 8 = ( − 1 ) ∑ i = 1 r p i 2 − 1 8 = ( − 1 ) ∑ i = 1 r p i 2 − 1 8 + 2 k = ( − 1 ) m 2 − 1 8 \begin{aligned} & \left( \frac{2}{m} \right)=\left( \frac{2}{ { {p}_{1}}} \right)\left( \frac{2}{ { {p}_{2}}} \right)\cdots \left( \frac{2}{ { {p}_{r}}} \right) \\ & ={ {\left( -1 \right)}^{\frac{ { {p}_{1}}^{2}-1}{8}}}{ {\left( -1 \right)}^{\frac{ { {p}_{2}}^{2}-1}{8}}}\cdots { {\left( -1 \right)}^{\frac{ { {p}_{r}}^{2}-1}{8}}} \\ & ={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}^{2}-1}{8}}}} \\ & ={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}^{2}-1}{8}}+2k}} \\ & ={ {\left( -1 \right)}^{\frac{ { {m}^{2}}-1}{8}}} \\ \end{aligned} (m2)=(p12)(p22)(pr2)=(1)8p121(1)8p221(1)8pr21=(1)i=1r8pi21=(1)i=1r8pi21+2k=(1)8m21

  3. 由于 m m m是奇数,因此只有 m ≡ ± 1     m o d   8 m\equiv \pm 1\text{ }\bmod 8 m±1 mod8 m ≡ ± 3     m o d   8 m\equiv \pm 3\text{ }\bmod 8 m±3 mod8的情况。

    1. m ≡ ± 1     m o d   8 m\equiv \pm 1\text{ }\bmod 8 m±1 mod8时, ∃ k ∈ Z ,  s.t.  m = 8 k ± 1 \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{. }m=8k\pm 1 kZ, s.tm=8k±1,此时有
      ( 2 m ) = ( − 1 ) m 2 − 1 8 = ( − 1 ) ( 8 k ± 1 ) 2 − 1 8 = ( − 1 ) 64 k 2 ± 16 k 8 = ( − 1 ) 8 k 2 ± 2 k = 1 \left( \frac{2}{m} \right)={ {\left( -1 \right)}^{\frac{ { {m}^{2}}-1}{8}}}={ {\left( -1 \right)}^{\frac{ { {\left( 8k\pm 1 \right)}^{2}}-1}{8}}}={ {\left( -1 \right)}^{\frac{64{ {k}^{2}}\pm 16k}{8}}}={ {\left( -1 \right)}^{8{ {k}^{2}}\pm 2k}}=1 (m2)=(1)8m21=(1)8(8k±1)21=(1)864k2±16k=(1)8k2±2k=1
    2. m ≡ ± 3     m o d   8 m\equiv \pm 3\text{ }\bmod 8 m±3 mod8时, ∃ k ∈ Z ,  s.t.  m = 8 k ± 3 \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{. }m=8k\pm 3 kZ, s.tm=8k±3,此时有
      ( 2 m ) = ( − 1 ) m 2 − 1 8 = ( − 1 ) ( 8 k ± 3 ) 2 − 1 8 = ( − 1 ) 64 k 2 ± 48 k + 8 8 = ( − 1 ) 8 k 2 ± 6 k + 1 = − 1 \left( \frac{2}{m} \right)={ {\left( -1 \right)}^{\frac{ { {m}^{2}}-1}{8}}}={ {\left( -1 \right)}^{\frac{ { {\left( 8k\pm 3 \right)}^{2}}-1}{8}}}={ {\left( -1 \right)}^{\frac{64{ {k}^{2}}\pm 48k+8}{8}}}={ {\left( -1 \right)}^{8{ {k}^{2}}\pm 6k+1}}=-1 (m2)=(1)8m21=(1)8(8k±3)21=(1)864k2±48k+8=(1)8k2±6k+1=1

7. 设 m , n ∈ Z > 1 m,n\in { {\mathbb{Z}}_{>1}} m,nZ>1是奇数,则 ( n m ) = ( − 1 ) m − 1 2 ⋅ n − 1 2 ( m n ) = { ( m n ) ,   m ≡ 1     m o d   4   或   n ≡ 1     m o d   4 − ( m n ) ,   m ≡ 3     m o d   4   且   n ≡ 3     m o d   4 \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right)=\left\{ \begin{aligned} & \left( \frac{m}{n} \right),\text{ }m\equiv 1\text{ }\bmod 4\text{ }或\text{ }n\equiv 1\text{ }\bmod 4 \\ & -\left( \frac{m}{n} \right),\text{ }m\equiv 3\text{ }\bmod 4\text{ }且\text{ }n\equiv 3\text{ }\bmod 4 \\ \end{aligned} \right. (mn)=(1)2m12n1(nm)=(nm), m1 mod4  n1 mod4(nm), m3 mod4  n3 mod4

证明
  设 m = p 1 ⋯ p r ,   n = q 1 ⋯ q s m={ {p}_{1}}\cdots { {p}_{r}},\text{ }n={ {q}_{1}}\cdots { {q}_{s}} m=p1pr, n=q1qs,则有
( n m ) = ∏ i = 1 r ( n p i ) = ∏ i = 1 r ∏ j = 1 s ( q j p i ) ( m n ) = ∏ j = 1 s ( m q j ) = ∏ j = 1 s ∏ i = 1 r ( p i q j ) \begin{aligned} & \left( \frac{n}{m} \right)=\prod\limits_{i=1}^{r}{\left( \frac{n}{ { {p}_{i}}} \right)}=\prod\limits_{i=1}^{r}{\prod\limits_{j=1}^{s}{\left( \frac{ { {q}_{j}}}{ { {p}_{i}}} \right)}} \\ & \left( \frac{m}{n} \right)=\prod\limits_{j=1}^{s}{\left( \frac{m}{ { {q}_{j}}} \right)}=\prod\limits_{j=1}^{s}{\prod\limits_{i=1}^{r}{\left( \frac{ { {p}_{i}}}{ { {q}_{j}}} \right)}} \\ \end{aligned} (mn)=i=1r(pin)=i=1rj=1s(piqj)(nm)=j=1s(qjm)=j=1si=1r(qjpi)

  1. gcd ⁡ ( m , n ) ≠ 1 \gcd \left( m,n \right)\ne 1 gcd(m,n)=1,则至少存在一对 p i 0 = q j 0 { {p}_{ { {i}_{0}}}}={ {q}_{ { {j}_{0}}}} pi0=qj0,对应地有
    p i 0 ∣ q j 0 ⇒ ( q j 0 p i 0 ) = 0   ⇒   ( n m ) = 0 q j 0 ∣ p i 0 ⇒ ( p i 0 q j 0 ) = 0   ⇒   ( m n ) = 0 \begin{aligned} & \left. { {p}_{ { {i}_{0}}}} \right|{ {q}_{ { {j}_{0}}}}\Rightarrow \left( \frac{ { {q}_{ { {j}_{0}}}}}{ { {p}_{ { {i}_{0}}}}} \right)=0\text{ }\Rightarrow \text{ }\left( \frac{n}{m} \right)=0 \\ & \left. { {q}_{ { {j}_{0}}}} \right|{ {p}_{ { {i}_{0}}}}\Rightarrow \left( \frac{ { {p}_{ { {i}_{0}}}}}{ { {q}_{ { {j}_{0}}}}} \right)=0\text{ }\Rightarrow \text{ }\left( \frac{m}{n} \right)=0 \\ \end{aligned} pi0qj0(pi0qj0)=0  (mn)=0qj0pi0(qj0pi0)=0  (nm)=0
    故自然成立
    ( n m ) = ( − 1 ) m − 1 2 ⋅ n − 1 2 ( m n ) \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right) (mn)=(1)2m12n1(nm)

  2. gcd ⁡ ( m , n ) = 1 \gcd \left( m,n \right)=1 gcd(m,n)=1,则 ∀ i , j \forall i,j i,j,奇素数 p i , q j { {p}_{i}},{ {q}_{j}} pi,qj满足 p i ≠ q j { {p}_{i}}\ne { {q}_{j}} pi=qj,因此可对Legendre符号 ( q j p i ) \left( \frac{ { {q}_{j}}}{ { {p}_{i}}} \right) (piqj)使用二次反转定律:
    ( n m ) = ∏ i = 1 r ∏ j = 1 s ( q j p i ) = ∏ i = 1 r ∏ j = 1 s ( ( − 1 ) p i − 1 2 ⋅ q j − 1 2 ( p i q j ) ) = ( ∏ i = 1 r ∏ j = 1 s ( − 1 ) p i − 1 2 ⋅ q j − 1 2 ) ( ∏ j = 1 s ∏ i = 1 r ( p i q j ) ) = ( − 1 ) ( ∑ i = 1 r p i − 1 2 ) ( ∑ j = 1 s q j − 1 2 ) ( m n ) \begin{aligned} & \left( \frac{n}{m} \right)=\prod\limits_{i=1}^{r}{\prod\limits_{j=1}^{s}{\left( \frac{ { {q}_{j}}}{ { {p}_{i}}} \right)}}=\prod\limits_{i=1}^{r}{\prod\limits_{j=1}^{s}{\left( { {\left( -1 \right)}^{\frac{ { {p}_{i}}-1}{2}\centerdot \frac{ { {q}_{j}}-1}{2}}}\left( \frac{ { {p}_{i}}}{ { {q}_{j}}} \right) \right)}} \\ & =\left( \prod\limits_{i=1}^{r}{\prod\limits_{j=1}^{s}{ { {\left( -1 \right)}^{\frac{ { {p}_{i}}-1}{2}\centerdot \frac{ { {q}_{j}}-1}{2}}}}} \right)\left( \prod\limits_{j=1}^{s}{\prod\limits_{i=1}^{r}{\left( \frac{ { {p}_{i}}}{ { {q}_{j}}} \right)}} \right) \\ & ={ {\left( -1 \right)}^{\left( \sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}} \right)\left( \sum\limits_{j=1}^{s}{\frac{ { {q}_{j}}-1}{2}} \right)}}\left( \frac{m}{n} \right) \\ \end{aligned} (mn)=i=1rj=1s(piqj)=i=1rj=1s((1)2pi12qj1(qjpi))=(i=1rj=1s(1)2pi12qj1)(j=1si=1r(qjpi))=(1)(i=1r2pi1)(j=1s2qj1)(nm)
    由性质2证明过程第一步的结论有
    { ∑ i = 1 r p i − 1 2 ≡ ( ∏ i = 1 r p i ) − 1 2 = m − 1 2     m o d   2 ∑ j = 1 s q j − 1 2 ≡ ( ∏ j = 1 s q j ) − 1 2 = n − 1 2     m o d   2 ⇒ ( ∑ i = 1 r p i − 1 2 ) ( ∑ j = 1 s q j − 1 2 ) ≡ m − 1 2 ⋅ n − 1 2     m o d   2 \begin{aligned} & \left\{ \begin{aligned} & \sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}}\equiv \frac{\left( \prod\limits_{i=1}^{r}{ { {p}_{i}}} \right)-1}{2}=\frac{m-1}{2}\text{ }\bmod 2 \\ & \sum\limits_{j=1}^{s}{\frac{ { {q}_{j}}-1}{2}}\equiv \frac{\left( \prod\limits_{j=1}^{s}{ { {q}_{j}}} \right)-1}{2}=\frac{n-1}{2}\text{ }\bmod 2 \\ \end{aligned} \right. \\ & \\ & \Rightarrow \left( \sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}} \right)\left( \sum\limits_{j=1}^{s}{\frac{ { {q}_{j}}-1}{2}} \right)\equiv \frac{m-1}{2}\centerdot \frac{n-1}{2}\text{ }\bmod 2 \\ \end{aligned} i=1r2pi12(i=1rpi)1=2m1 mod2j=1s2qj12(j=1sqj)1=2n1 mod2(i=1r2pi1)(j=1s2qj1)2m12n1 mod2
    因此 ∃ k ∈ Z ,  s.t. \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{.} kZ, s.t.
    ( ∑ i = 1 r p i − 1 2 ) ( ∑ j = 1 s q j − 1 2 ) = 2 k + m − 1 2 ⋅ n − 1 2 \left( \sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}} \right)\left( \sum\limits_{j=1}^{s}{\frac{ { {q}_{j}}-1}{2}} \right)=2k+\frac{m-1}{2}\centerdot \frac{n-1}{2} (i=1r2pi1)(j=1s2qj1)=2k+2m12n1
    基于此有
    ( n m ) = ( − 1 ) ( ∑ i = 1 r p i − 1 2 ) ( ∑ j = 1 s q j − 1 2 ) ( m n ) = ( − 1 ) 2 k + m − 1 2 ⋅ n − 1 2 ( m n ) = ( − 1 ) m − 1 2 ⋅ n − 1 2 ( m n ) \begin{aligned} & \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\left( \sum\limits_{i=1}^{r}{\frac{ { {p}_{i}}-1}{2}} \right)\left( \sum\limits_{j=1}^{s}{\frac{ { {q}_{j}}-1}{2}} \right)}}\left( \frac{m}{n} \right) \\ & ={ {\left( -1 \right)}^{2k+\frac{m-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right) \\ & ={ {\left( -1 \right)}^{\frac{m-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right) \\ \end{aligned} (mn)=(1)(i=1r2pi1)(j=1s2qj1)(nm)=(1)2k+2m12n1(nm)=(1)2m12n1(nm)

  3. 在已经证明了
    ( n m ) = ( − 1 ) m − 1 2 ⋅ n − 1 2 ( m n ) \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\frac{m-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right) (mn)=(1)2m12n1(nm)
    的基础上,研究 ( n m ) \left( \frac{n}{m} \right) (mn) ( m n ) \left( \frac{m}{n} \right) (nm)的符号关系。
    由于 m , n m,n m,n均为奇数,因此只有以下情况: m ≡ 1 , 3     m o d   4 ,   n ≡ 1 , 3     m o d   4 m\equiv 1,3\text{ }\bmod 4,\text{ }n\equiv 1,3\text{ }\bmod 4 m1,3 mod4, n1,3 mod4

    1. m ≡ 1     m o d   4 m\equiv 1\text{ }\bmod 4 m1 mod4时, ∃ k ∈ Z ,  s.t. \exists k\in \mathbb{Z},\text{ s}\text{.t}\text{.} kZ, s.t. m = 4 k + 1 m=4k+1 m=4k+1,此时有
      ( n m ) = ( − 1 ) 4 k + 1 − 1 2 ⋅ n − 1 2 ( m n ) = ( ( − 1 ) 2 k ) n − 1 2 ( m n ) = ( m n ) \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\frac{4k+1-1}{2}\centerdot \frac{n-1}{2}}}\left( \frac{m}{n} \right)={ {\left( { {\left( -1 \right)}^{2k}} \right)}^{\frac{n-1}{2}}}\left( \frac{m}{n} \right)=\left( \frac{m}{n} \right) (mn)=(1)24k+112n1(nm)=((1)2k)2n1(nm)=(nm)
      同理, n ≡ 1     m o d   4 n\equiv 1\text{ }\bmod 4 n1 mod4时也有 ( n m ) = ( m n ) \left( \frac{n}{m} \right)=\left( \frac{m}{n} \right) (mn)=(nm)
    2. ∼ ( m ≡ 1     m o d   4   ∨   n ≡ 1     m o d   4 ) \sim \left( m\equiv 1\text{ }\bmod 4\text{ }\vee \text{ }n\equiv 1\text{ }\bmod 4 \right) (m1 mod4  n1 mod4) m ≡ 3     m o d   4   ∧   n ≡ 3     m o d   4 m\equiv 3\text{ }\bmod 4\text{ }\wedge \text{ }n\equiv 3\text{ }\bmod 4 m3 mod4  n3 mod4时, ∃ k 1 , k 2 ∈ Z ,  s.t. \exists { {k}_{1}},{ {k}_{2}}\in \mathbb{Z},\text{ s}\text{.t}\text{.} k1,k2Z, s.t. m = 4 k 1 + 3 ,   n = 4 k 2 + 3 m=4{ {k}_{1}}+3,\text{ }n=4{ {k}_{2}}+3 m=4k1+3, n=4k2+3,此时有
      ( n m ) = ( − 1 ) 4 k 1 + 3 − 1 2 ⋅ 4 k 2 + 3 − 1 2 ( m n ) = ( − 1 ) ( 2 k 1 + 1 ) ( 2 k 2 + 1 ) ( m n ) = ( ( − 1 ) 2 k 1 + 1 ) 2 k 2 + 1 ( m n ) = ( − 1 ) 2 k 2 + 1 ( m n ) = − ( m n ) \begin{aligned} & \left( \frac{n}{m} \right)={ {\left( -1 \right)}^{\frac{4{ {k}_{1}}+3-1}{2}\centerdot \frac{4{ {k}_{2}}+3-1}{2}}}\left( \frac{m}{n} \right) \\ & ={ {\left( -1 \right)}^{\left( 2{ {k}_{1}}+1 \right)\left( 2{ {k}_{2}}+1 \right)}}\left( \frac{m}{n} \right) \\ & ={ {\left( { {\left( -1 \right)}^{2{ {k}_{1}}+1}} \right)}^{2{ {k}_{2}}+1}}\left( \frac{m}{n} \right) \\ & ={ {\left( -1 \right)}^{2{ {k}_{2}}+1}}\left( \frac{m}{n} \right) \\ & =-\left( \frac{m}{n} \right) \\ \end{aligned} (mn)=(1)24k1+3124k2+31(nm)=(1)(2k1+1)(2k2+1)(nm)=((1)2k1+1)2k2+1(nm)=(1)2k2+1(nm)=(nm)
      因此有
      ( n m ) = { ( m n ) ,   m ≡ 1     m o d   4   或   n ≡ 1     m o d   4 − ( m n ) ,   m ≡ 3     m o d   4   且   n ≡ 3     m o d   4 \left( \frac{n}{m} \right)=\left\{ \begin{aligned} & \left( \frac{m}{n} \right),\text{ }m\equiv 1\text{ }\bmod 4\text{ }或\text{ }n\equiv 1\text{ }\bmod 4 \\ & -\left( \frac{m}{n} \right),\text{ }m\equiv 3\text{ }\bmod 4\text{ }且\text{ }n\equiv 3\text{ }\bmod 4 \\ \end{aligned} \right. (mn)=(nm), m1 mod4  n1 mod4(nm), m3 mod4  n3 mod4

8. 设大于1的奇数 m m m的标准分解式为 m = p 1 ⋯ p r m={ {p}_{1}}\cdots { {p}_{r}} m=p1pr。若 gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1 2 ∣ a 2\cancel{|}a 2 a,则 ( a m ) = ( − 1 ) ∑ i = 1 r ∑ k = 1 p i − 1 2 [ a k p i ] \left( \frac{a}{m} \right)={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\sum\limits_{k=1}^{\frac{ { {p}_{i}}-1}{2}}{\left[ \frac{ak}{ { {p}_{i}}} \right]}}}} (ma)=(1)i=1rk=12pi1[piak]

证明
( a m ) = ( a p 1 ) ⋯ ( a p r ) \left( \frac{a}{m} \right)=\left( \frac{a}{ { {p}_{1}}} \right)\cdots \left( \frac{a}{ { {p}_{r}}} \right) (ma)=(p1a)(pra)
m = p 1 ⋯ p r m={ {p}_{1}}\cdots { {p}_{r}} m=p1pr是大于1的奇数,因此 p 1 , ⋯   , p r { {p}_{1}},\cdots ,{ {p}_{r}} p1,,pr都是奇素数。由于 gcd ⁡ ( a , m ) = 1 \gcd \left( a,m \right)=1 gcd(a,m)=1,因此 ∀ i ∈ { 1 , ⋯   , r } \forall i\in \left\{ 1,\cdots ,r \right\} i{ 1,,r} gcd ⁡ ( a , p i ) = 1 \gcd \left( a,{ {p}_{i}} \right)=1 gcd(a,pi)=1。又 2 ∣ a 2\cancel{|}a 2 a,因此由博文《Legendre符号的定义和基本性质》中的性质8
( a p i ) = ( − 1 ) ∑ k = 1 p i − 1 2 [ a k p i ] \left( \frac{a}{ { {p}_{i}}} \right)={ {\left( -1 \right)}^{\sum\limits_{k=1}^{\frac{ { {p}_{i}}-1}{2}}{\left[ \frac{ak}{ { {p}_{i}}} \right]}}} (pia)=(1)k=12pi1[piak]
于是有
( a m ) = ∏ i = 1 r ( − 1 ) ∑ k = 1 p i − 1 2 [ a k p i ] = ( − 1 ) ∑ i = 1 r ∑ k = 1 p i − 1 2 [ a k p i ] \left( \frac{a}{m} \right)=\prod\limits_{i=1}^{r}{ { {\left( -1 \right)}^{\sum\limits_{k=1}^{\frac{ { {p}_{i}}-1}{2}}{\left[ \frac{ak}{ { {p}_{i}}} \right]}}}}={ {\left( -1 \right)}^{\sum\limits_{i=1}^{r}{\sum\limits_{k=1}^{\frac{ { {p}_{i}}-1}{2}}{\left[ \frac{ak}{ { {p}_{i}}} \right]}}}} (ma)=i=1r(1)k=12pi1[piak]=(1)i=1rk=12pi1[piak]

猜你喜欢

转载自blog.csdn.net/qq_44261017/article/details/109749246