二分图基本性质

最小点覆盖=最大匹配。

最小边覆盖=最大独立集=图中点的个数-最大匹配。
 
最小路径覆盖
结论:DAG最小路径覆盖=图顶点-建图后的最大匹配
最小不相交路径覆盖
建图方式:把一个的点V拆点成Vx和Vy,如果A连向B,那么就建一条Ax连向By的边。 
图中有多少条路径,可以以一种方法得到,就是计算出度为0的点的个数。如果知道这个就很容易得出这个结论了。

最小相交路径覆盖
做法首先跑floyd,求出原图的传递闭包,然后用上述方法做即可。证明略。

最大团=补图的最大独立集
二分图的最大独立集:
定义:选出一些顶点使得这些顶点两两不相邻,则这些点构成的集合称为独立集。找出一个包含顶点数最多的独立集称为最大独立集。

二分图的最大团
定义:对于一般图来说,团是一个顶点集合,且由该顶点集合诱导的子图是一个完全图,简单说,就是选出一些顶点,这些顶点两两之间都有边。最大团就是使得选出的这个顶点集合最大。对于二分图来说,我们默认为左边的所有点之间都有边,右边的所有顶点之间都有边。那么,实际上,我们是要在左边找到一个顶点子集X,在右边找到一个顶点子集Y,使得X中每个顶点和Y中每个顶点之间都有边。

在二分图最大匹配中,每个点(不管是X方点还是Y方点)最多只能和一条匹配边相关联,然而,我们经常遇到这种问题,即二分图匹配中一个点可以和多条匹配边相关联,但有上限,或者说,Li表示点i最多可以和多少条匹配边相关联。

二分图多重匹配分为二分图多重最大匹配与二分图多重最优匹配两种,分别可以用最大流与最大费用最大流解决。

(1)二分图多重最大匹配:
在原图上建立源点S和汇点T,S向每个X方点连一条容量为该X方点L值的边,每个Y方点向T连一条容量为该Y方点L值的边,原来二分图中各边在新的网络中仍存在,容量为1(若该边可以使用多次则容量大于1),求该网络的最大流,就是该二分图多重最大匹配的值。

(2)二分图多重最优匹配:
在原图上建立源点S和汇点T,S向每个X方点连一条容量为该X方点L值、费用为0的边,每个Y方点向T连一条容量为该Y方点L值、费用为0的边,原来二分图中各边在新的网络中仍存在,容量为1(若该边可以使用多次则容量大于1),费用为该边的权值。求该网络的最大费用最大流,就是该二分图多重最优匹配的值。

网上看到了好多都是最小路径覆盖和最小边覆盖分不清的。这里特意看了多篇博客,自己整理了一个比较满意的,方便以后自己查询。

猜你喜欢

转载自blog.csdn.net/Evildoer_llc/article/details/82990784