反向传播算法(Backpropagation)----Gradient Descent的推导过程

BP算法是适用于多层神经网络的一种算法,它是建立在梯度下降法的基础上的。本文着重推导怎样利用梯度下降法来minimise Loss Function。

给出多层神经网络的示意图:
在这里插入图片描述

1.定义Loss Function

假设有一组数据样本 x 1 x^{1} x 2 x^{2} ,… ,每一个x都有很多个特征,输入x,会得到一个输出y,每一个输出都对应一个损失函数L,将所有L加起来就是total loss。
那么每一个L该如何定义呢?这里还是采用了交叉熵,如下所示:
在这里插入图片描述
这里的 y i y^{i} 是真实输出, y ^ y\hat{} 是y target,是人为定义的。最终Total Loss的表达式如下:
在这里插入图片描述

2.Gradient Descent

L对应了一个参数,即Network parameters θ(w1,w2…b1,b2…),那么Gradient Descent就是求出参数 θ \theta^{*} 来minimise Loss Function,即:
在这里插入图片描述
梯度下降的具体步骤为:
图源:李宏毅机器学习讲稿

3.求偏微分

从上图可以看出,这里难点主要是求偏微分,由于L是所有损失之和,因此我们只需要对其中一个损失求偏微分,最后再求和即可。
先抽取一个简单的神经元来解释:在这里插入图片描述
先理一理各个变量之间的关系:我们要求的是Total Loss对参数w的偏导,而Total Loss是一个个小的l累加得到的,因此,我们只需要求得 l w \frac{\partial l}{\partial w} ,而 l = y ^ l n y l=-\hat{y}lny ,其中 y ^ \hat{y} 是人为定义的,跟w没有关系,因此我们只需要知道 y w \frac{\partial y}{\partial w} 。l跟z有关系,根据链式求导法则,我们需要求 l z \frac{\partial l}{\partial z} z w \frac{\partial z}{\partial w} ,其中 z w \frac{\partial z}{\partial w} 的求解较为容易,如下图所示:
在这里插入图片描述
l z \frac{\partial l}{\partial z} 是一个难点,因为我们并不知道后面到底有多少层,也不知道情况到底有多复杂,我们不妨先取一种最简单的情况,如下所示:
在这里插入图片描述

4.反向传播

在第一张图里面,我们经过正向传播很容易求出了 z w \frac{\partial z}{\partial w} ,而对于 l z \frac{\partial l}{\partial z} ,则并不是那么好求。上图其实就是运用了反向传播的思想, 对于上图中 l z \frac{\partial l}{\partial z} 最后的表达式,我们可以换一种结构,如下所示:
在这里插入图片描述
l对两个z的偏导我们假设是已知的,并且在这里是作为输入,三角形结构可以理解为一个乘法运算电路,其放大系数为 σ ( z ) \sigma {}'(z) 。但是在实际情况中,l对两个z的偏导是未知的。假设神经网络最终的结构就是如上图所示,那么我们的问题已经解决了:
在这里插入图片描述
其中:
在这里插入图片描述
但是假如该神经元不是最后一层,我们又该如何呢?比如又多了一层,如下所示:
在这里插入图片描述
那么我们只要知道 l z a \frac{\partial l}{\partial z_{a}} l z b \frac{\partial l}{\partial z_{b}} ,我们同样可以算出 l z \frac{\partial l}{\partial z{}'} 以及 l z \frac{\partial l}{\partial z{}''} ,原理跟上面类似,如下所示:

在这里插入图片描述
l z b \frac{\partial l}{\partial z_{b}} 同样是l先对y求导,y再对 z b z_{b} 求导。

那假设我们再加一层呢?再加两层呢?再加三层呢?。。。,情况还是一样的,还是先求l对最后一层z的导数,乘以权重相加后最后再乘上 σ ( z , z , . . . ) \sigma {}'(z{}'',z{}''',...) 即可。
最后给一个实例:
在这里插入图片描述
它的反向传播图长这样:
在这里插入图片描述
我们可以很轻松的算出 l z 5 \frac{\partial l}{\partial z_{5}} l z 6 \frac{\partial l}{\partial z_{6}} ,算出这两个之后,根据上面我们找到的关系式,我们也可以轻易算出 l z 3 \frac{\partial l}{\partial z_{3}} l z 4 \frac{\partial l}{\partial z_{4}} ,最后再算出 l z 1 \frac{\partial l}{\partial z_{1}} l z 2 \frac{\partial l}{\partial z_{2}} 。然后 l z 1 \frac{\partial l}{\partial z_{1}} l z 2 \frac{\partial l}{\partial z_{2}} 再分别乘上x1和x2,就是我们最终要找的 l w 1 \frac{\partial l}{\partial w_{1}} l w 2 \frac{\partial l}{\partial w_{2}}
我们不难发现,这种计算方式很清楚明了地体现了“反向传播”四个字。
好了,目标达成!!
在这里插入图片描述

5.总结

通过Forward Pass我们求得 z w = a \frac{\partial z}{\partial w}=a ,然后通过Backward Pass我们求得 l z \frac{\partial l}{\partial z} ,二者相乘,就是 l w \frac{\partial l}{\partial w} 。利用上述方法求得所有参数的值之后,我们就可以用梯度下降法来更新参数,直至找到最优解。

猜你喜欢

转载自blog.csdn.net/Cyril_KI/article/details/107030538