矩阵分析与多元统计 线性空间与线性变换2

矩阵分析与多元统计 线性空间与线性变换2

线性映射

V 1 , V 2 V_1,V_2 是数域 F F 上的两个线性空间, A : V 1 V 2 \mathcal{A}:V_1 \to V_2 是线性映射,如果: α 1 , α 2 V 1 \forall \alpha_1,\alpha_2 \in V_1 λ F \lambda \in F

  1. A ( α 1 + α 2 ) = A α 1 + A α 2 \mathcal{A}(\alpha_1+\alpha_2) = \mathcal{A}{\alpha_1} + \mathcal{A}{\alpha_2}
  2. A ( λ α 1 ) = λ A α 1 \mathcal{A}(\lambda\alpha_1) =\lambda \mathcal{A}{\alpha_1}

假设 α 1 , , α n \alpha_1,\cdots,\alpha_n V 1 V_1 的一组基, β 1 , , β m \beta_1,\cdots,\beta_m V 2 V_2 的一组基,称 A F m × n A \in F^{m \times n} 是线性映射 A \mathcal{A} 在基 α 1 , , α n \alpha_1,\cdots,\alpha_n β 1 , , β m \beta_1,\cdots,\beta_m 下的表示,如果
A ( α 1 , , α n ) = ( β 1 , , β m ) A \mathcal{A}(\alpha_1,\cdots,\alpha_n) = (\beta_1,\cdots,\beta_m)A
在给定两组基时,线性映射和它的矩阵表示是一一对应的(证明可以参考史荣昌的矩阵分析第三版定理1.4.1)。

矩阵的等价

假设 α 1 , , α n \alpha_1',\cdots,\alpha_n' V 1 V_1 的另一组基,从 α 1 , , α n \alpha_1,\cdots,\alpha_n 到这组基的过渡矩阵是 P P β 1 , , β m \beta_1',\cdots,\beta_m' V 2 V_2 的另一组基,从 β 1 , , β m \beta_1,\cdots,\beta_m 到这组基的过渡矩阵是 Q Q ,如果 A \mathcal{A} α 1 , , α n \alpha_1',\cdots,\alpha_n' β 1 , , β m \beta_1',\cdots,\beta_m' 下的矩阵表示为 B B ,则
B = Q 1 A P B = Q^{-1}AP
这个等式的证明就是把过渡矩阵和矩阵表示的定义叙述一遍即可,等式两边表达的是同一个向量的等价表示方法而已,此时称矩阵 A A 和矩阵 B B 等价。

线性映射的像空间与核空间

定义 A ( V 1 ) = { β = A ( α ) V 2 : α V 1 } \mathcal{A}(V_1) = \{\beta = \mathcal{A}(\alpha)\in V_2:\forall \alpha \in V_1\} 为线性映射的像空间,记为 R ( A ) R(\mathcal{A}) ,定义线性映射的秩为
r a n k ( A ) = dim R ( A ) rank(\mathcal{A}) = \dim R(\mathcal{A})
定义线性映射的核空间为
N ( A ) = { α V 1 : A ( α ) = 0 V 2 } N(\mathcal{A}) = \{\alpha \in V_1: \mathcal{A}(\alpha)=0 \in V_2\}
dim N ( A ) \dim N(\mathcal{A}) 为线性映射的零度。像空间是 V 2 V_2 的线性子空间,核空间是 V 1 V_1 的线性子空间。

例1.2.1 证明 r a n k ( A ) = r a n k ( A ) rank(\mathcal{A}) = rank(A) A A 是任意矩阵表示

关于核空间与像空间有一个很重要的关系:
dim R ( A ) + dim N ( A ) = dim V 1 \dim R(\mathcal{A}) + \dim N(\mathcal{A}) = \dim V_1
下面给出一个简单证明:

先证明一个用得上的引理: R ( A ) = s p a n ( A ( α 1 ) , , A ( α n ) ) R(\mathcal{A}) = span(\mathcal{A}(\alpha_1),\cdots,\mathcal{A}(\alpha_n))
α V 1 \forall \alpha \in V_1 , α = x 1 α 1 + + x n α n \exists \alpha = x_1\alpha_1 + \cdots + x_n \alpha_n
β = A ( α ) = A ( x 1 α 1 + + x n α n ) = x 1 A ( α 1 ) + + x n A ( x n ) V 2 \beta = \mathcal{A}(\alpha) = \mathcal{A}( x_1\alpha_1 + \cdots + x_n \alpha_n) \\ = x_1\mathcal{A}(\alpha_1) + \cdots + x_n \mathcal{A}(x_n) \in V_2
因此
R ( A ) = s p a n ( A ( α 1 ) , , A ( α n ) ) R(\mathcal{A}) = span(\mathcal{A}(\alpha_1),\cdots,\mathcal{A}(\alpha_n))
假设 γ 1 , , γ r \gamma_1,\cdots,\gamma_r N ( A ) N(\mathcal{A}) 的一组基,其中 r r A \mathcal{A} 的零度,将这组基扩展到 V 1 V_1 ,记为 γ 1 , , γ r , γ r + 1 , , γ n \gamma_1,\cdots,\gamma_r,\gamma_{r+1}',\cdots,\gamma_n' ,则
R ( A ) = s p a n ( A ( γ 1 ) , , A ( γ r ) , A ( γ r + 1 ) , , A ( γ n ) ) = s p a n ( 0 , , 0 , A ( γ r + 1 ) , , A ( γ n ) ) R(\mathcal{A}) = span(\mathcal{A}(\gamma_1),\cdots,\mathcal{A}(\gamma_r),\mathcal{A}(\gamma_{r+1}'),\cdots,\mathcal{A}(\gamma_n')) \\ = span(0,\cdots,0,\mathcal{A}(\gamma_{r+1}'),\cdots,\mathcal{A}(\gamma_n'))
因此
dim R ( A ) = dim s p a n ( A ( γ r + 1 ) , , A ( γ n ) ) \dim R(\mathcal{A}) = \dim span(\mathcal{A}(\gamma_{r+1}'),\cdots,\mathcal{A}(\gamma_n'))
要证明 dim R ( A ) + dim N ( A ) = dim V 1 \dim R(\mathcal{A}) + \dim N(\mathcal{A}) = \dim V_1 ,只需要 A ( γ r + 1 ) , , A ( γ n ) \mathcal{A}(\gamma_{r+1}'),\cdots,\mathcal{A}(\gamma_n') 线性无关:
考虑
j = r + 1 n k j A ( γ j ) = 0 A ( j = r + 1 n k j γ j ) = 0 j = r + 1 n k j γ j N ( A ) \sum_{j=r+1}^n k_j \mathcal{A}(\gamma_j') = 0 \Leftrightarrow \mathcal{A}(\sum_{j=r+1}^n k_j \gamma_j') = 0 \Leftrightarrow \sum_{j=r+1}^n k_j \gamma_j' \in N(\mathcal{A})
因此它可以用 N ( A ) N(\mathcal{A}) 的基表示
j = r + 1 n k j γ j = i = 1 r l i γ i \exists \sum_{j=r+1}^n k_j \gamma_j' = \sum_{i=1}^r l_i \gamma_i
因为 γ 1 , , γ r , γ r + 1 , , γ n \gamma_1,\cdots,\gamma_r,\gamma_{r+1}',\cdots,\gamma_n' 线性无关,因此 k j = l i = 0 \forall k_j=l_i=0

猜你喜欢

转载自blog.csdn.net/weixin_44207974/article/details/106439351