机器学习实战 k-近邻算法

1.k-近邻算法概述

k-近邻算法采用测量不同特征值之间的距离方法进行分类它的工作原理是:存在一个样本数
据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。
最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
k-近邻算法的一般流程
(1) 收集数据:可以使用任何方法。
(2) 准备数据:距离计算所需要的数值,最好是结构化的数据格式。
(3) 分析数据:可以使用任何方法。
(4) 训练算法:此步骤不适用于k-近邻算法。
(5) 测试算法:计算错误率。
(6) 使用算法:首先需要输入样本数据和结构化的输出结果,然后运行k-近邻算法判定输
入数据分别属于哪个分类,最后应用对计算出的分类执行后续的处理。

2 电影分类判定

创建数据

def createDataSet():
    # 四组二维特征
    group = np.array([[1, 101], [5, 89], [108, 5], [115, 8]])
    # 四组特征的标签
    labels = ['爱情片', '爱情片', '动作片', '动作片']
    return group, labels

分类

def classify0(inX, dataSet, labels, k):
    # numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    # 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    # 二维特征相减后平方
    sqDiffMat = diffMat ** 2
    # sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    # 开方,计算出距离
    distances = sqDistances ** 0.5
    # 返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    # 定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        # 取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        # dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        # 计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    # python3中用items()替换python2中的iteritems()
    # key=operator.itemgetter(1)根据字典的值进行排序
    # key=operator.itemgetter(0)根据字典的键进行排序
    # reverse降序排序字典
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    # 返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]


if __name__ == '__main__':
    # 创建数据集
    group, labels = createDataSet()
    # 测试集
    test = [101, 20]
    # kNN分类
    test_class = classify0(test, group, labels, 3)
    # 打印分类结果
    print(test_class)

3 约会网站配对效果判定

分类

def classify0(inX, dataSet, labels, k):
    # numpy函数shape[0]返回dataSet的行数
    dataSetSize = dataSet.shape[0]
    # 在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
    diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
    # 二维特征相减后平方
    sqDiffMat = diffMat ** 2
    # sum()所有元素相加,sum(0)列相加,sum(1)行相加
    sqDistances = sqDiffMat.sum(axis=1)
    # 开方,计算出距离
    distances = sqDistances ** 0.5
    # 返回distances中元素从小到大排序后的索引值
    sortedDistIndices = distances.argsort()
    # 定一个记录类别次数的字典
    classCount = {}
    for i in range(k):
        # 取出前k个元素的类别
        voteIlabel = labels[sortedDistIndices[i]]
        # dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
        # 计算类别次数
        classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
    # python3中用items()替换python2中的iteritems()
    # key=operator.itemgetter(1)根据字典的值进行排序
    # key=operator.itemgetter(0)根据字典的键进行排序
    # reverse降序排序字典
    sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
    # 返回次数最多的类别,即所要分类的类别
    return sortedClassCount[0][0]

打开并解析文件,对数据进行分类:1代表不喜欢,2代表魅力一般,3代表极具魅力

def file2matrix(filename):
    # 打开文件
    fr = open(filename)
    # 读取文件所有内容
    arrayOLines = fr.readlines()
    # 得到文件行数
    numberOfLines = len(arrayOLines)
    # 返回的NumPy矩阵,解析完成的数据:numberOfLines行,3列
    returnMat = np.zeros((numberOfLines, 3))
    # 返回的分类标签向量
    classLabelVector = []
    # 行的索引值
    index = 0
    for line in arrayOLines:
        # s.strip(rm),当rm空时,默认删除空白符(包括'\n','\r','\t',' ')
        line = line.strip()
        # 使用s.split(str="",num=string,cout(str))将字符串根据'\t'分隔符进行切片。
        listFromLine = line.split('\t')
        # 将数据前三列提取出来,存放到returnMat的NumPy矩阵中,也就是特征矩阵
        returnMat[index, :] = listFromLine[0:3]
        # 根据文本中标记的喜欢的程度进行分类,1代表不喜欢,2代表魅力一般,3代表极具魅力
        if listFromLine[-1] == 'didntLike':
            classLabelVector.append(1)
        elif listFromLine[-1] == 'smallDoses':
            classLabelVector.append(2)
        elif listFromLine[-1] == 'largeDoses':
            classLabelVector.append(3)
        index += 1
    return returnMat, classLabelVector

可视化数据

def showdatas(datingDataMat, datingLabels):
    # 设置汉字格式
    font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=14)
    # 将fig画布分隔成1行1列,不共享x轴和y轴,fig画布的大小为(13,8)
    # 当nrow=2,nclos=2时,代表fig画布被分为四个区域,axs[0][0]表示第一行第一个区域
    fig, axs = plt.subplots(nrows=2, ncols=2, sharex=False, sharey=False, figsize=(13, 8))

    numberOfLabels = len(datingLabels)
    LabelsColors = []
    for i in datingLabels:
        if i == 1:
            LabelsColors.append('black')
        if i == 2:
            LabelsColors.append('orange')
        if i == 3:
            LabelsColors.append('red')
    # 画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第二列(玩游戏)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][0].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 1], color=LabelsColors, s=15, alpha=.5)
    # 设置标题,x轴label,y轴label
    axs0_title_text = axs[0][0].set_title(u'每年获得的飞行常客里程数与玩视频游戏所消耗时间占比', FontProperties=font)
    axs0_xlabel_text = axs[0][0].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
    axs0_ylabel_text = axs[0][0].set_ylabel(u'玩视频游戏所消耗时间占比', FontProperties=font)
    plt.setp(axs0_title_text, size=9, weight='bold', color='red')
    plt.setp(axs0_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs0_ylabel_text, size=7, weight='bold', color='black')

    # 画出散点图,以datingDataMat矩阵的第一(飞行常客例程)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[0][1].scatter(x=datingDataMat[:, 0], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)
    # 设置标题,x轴label,y轴label
    axs1_title_text = axs[0][1].set_title(u'每年获得的飞行常客里程数与每周消费的冰激淋公升数', FontProperties=font)
    axs1_xlabel_text = axs[0][1].set_xlabel(u'每年获得的飞行常客里程数', FontProperties=font)
    axs1_ylabel_text = axs[0][1].set_ylabel(u'每周消费的冰激淋公升数', FontProperties=font)
    plt.setp(axs1_title_text, size=9, weight='bold', color='red')
    plt.setp(axs1_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs1_ylabel_text, size=7, weight='bold', color='black')

    # 画出散点图,以datingDataMat矩阵的第二(玩游戏)、第三列(冰激凌)数据画散点数据,散点大小为15,透明度为0.5
    axs[1][0].scatter(x=datingDataMat[:, 1], y=datingDataMat[:, 2], color=LabelsColors, s=15, alpha=.5)
    # 设置标题,x轴label,y轴label
    axs2_title_text = axs[1][0].set_title(u'玩视频游戏所消耗时间占比与每周消费的冰激淋公升数', FontProperties=font)
    axs2_xlabel_text = axs[1][0].set_xlabel(u'玩视频游戏所消耗时间占比', FontProperties=font)
    axs2_ylabel_text = axs[1][0].set_ylabel(u'每周消费的冰激淋公升数', FontProperties=font)
    plt.setp(axs2_title_text, size=9, weight='bold', color='red')
    plt.setp(axs2_xlabel_text, size=7, weight='bold', color='black')
    plt.setp(axs2_ylabel_text, size=7, weight='bold', color='black')
    # 设置图例
    didntLike = mlines.Line2D([], [], color='black', marker='.',
                              markersize=6, label='didntLike')
    smallDoses = mlines.Line2D([], [], color='orange', marker='.',
                               markersize=6, label='smallDoses')
    largeDoses = mlines.Line2D([], [], color='red', marker='.',
                               markersize=6, label='largeDoses')
    # 添加图例
    axs[0][0].legend(handles=[didntLike, smallDoses, largeDoses])
    axs[0][1].legend(handles=[didntLike, smallDoses, largeDoses])
    axs[1][0].legend(handles=[didntLike, smallDoses, largeDoses])
    # 显示图片
    plt.show()

对数据进行归一化

def autoNorm(dataSet):
    # 获得数据的最小值 --min(0) 表示返回的是每一列的最小指 ,min(1)是每一行的最小值
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    # 最大值和最小值的范围
    ranges = maxVals - minVals
    # shape(dataSet)返回dataSet的矩阵行列数
    normDataSet = np.zeros(np.shape(dataSet))
    # 返回dataSet的行数
    m = dataSet.shape[0]
    # 原始值减去最小值
    normDataSet = dataSet - np.tile(minVals, (m, 1))
    # 除以最大和最小值的差,得到归一化数据
    normDataSet = normDataSet / np.tile(ranges, (m, 1))
    # 返回归一化数据结果,数据范围,最小值
    return normDataSet, ranges, minVals

分类器测试函数

def datingClassTest():
    # 打开的文件名
    filename = "datingTestSet.txt"
    # 将返回的特征矩阵和分类向量分别存储到datingDataMat和datingLabels中
    datingDataMat, datingLabels = file2matrix(filename)
    # 取所有数据的百分之十
    hoRatio = 0.10
    # 数据归一化,返回归一化后的矩阵,数据范围,数据最小值
    normMat, ranges, minVals = autoNorm(datingDataMat)
    # 获得normMat的行数
    m = normMat.shape[0]
    # 百分之十的测试数据的个数
    numTestVecs = int(m * hoRatio)
    # 分类错误计数
    errorCount = 0.0

    for i in range(numTestVecs):
        # 前numTestVecs个数据作为测试集,后m-numTestVecs个数据作为训练集
        classifierResult = classify0(normMat[i, :], normMat[numTestVecs:m, :],
                                     datingLabels[numTestVecs:m], 4)
        print("分类结果:%d\t真实类别:%d" % (classifierResult, datingLabels[i]))
        if classifierResult != datingLabels[i]:
            errorCount += 1.0
    print("错误率:%f%%" % (errorCount / float(numTestVecs) * 100))

通过输入一个人的三维特征,进行分类输出

def classifyPerson():
    # 输出结果
    resultList = ['讨厌', '有些喜欢', '非常喜欢']
    # 三维特征用户输入
    precentTats = float(input("玩视频游戏所耗时间百分比:"))
    ffMiles = float(input("每年获得的飞行常客里程数:"))
    iceCream = float(input("每周消费的冰激淋公升数:"))
    # 打开的文件名
    filename = "datingTestSet.txt"
    # 打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    # 训练集归一化
    normMat, ranges, minVals = autoNorm(datingDataMat)
    # 生成NumPy数组,测试集
    inArr = np.array([precentTats, ffMiles, iceCream])
    # 测试集归一化
    norminArr = (inArr - minVals) / ranges
    # 返回分类结果
    classifierResult = classify0(norminArr, normMat, datingLabels, 3)
    # 打印结果
    print("你可能%s这个人" % (resultList[classifierResult]))

main函数

if __name__ == '__main__':

    # 1、测试代码
    filename = "datingTestSet.txt"
    # 打开并处理数据
    datingDataMat, datingLabels = file2matrix(filename)
    showdatas(datingDataMat, datingLabels)

    #2、测试代码
    datingClassTest()

    # 正式代码
    classifyPerson()
发布了11 篇原创文章 · 获赞 0 · 访问量 120

猜你喜欢

转载自blog.csdn.net/weixin_41898948/article/details/103111524