一个关于gcd的等式的证明

证:$a > b$ 且 $gcd(a,b)=1$,有 $gcd(a^n-b^n, a^m-b^m) = a^{gcd(n, m)} - b^{gcd(n,m)}$.

证明:

假设 $n > m$,$r = n \% m$.

根据辗转相除法,

$a^n - b^n = (a^m-b^m)(a^{n-m} + a^{n-2m}b^m + ...+) + a^rb^{n-r} - b^n$,

$gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^rb^{n-r}-b^n) = gcd(a^m-b^m, b^{n-r}(a^r-b^r))$,

因为 $r = n \% m$,所以 $b^{n-r} = b^{m\left \lfloor \frac{n}{m} \right \rfloor} = b^{km}$。

考虑 $gcd(b^{km}, a^m-b^m)$,

由多项式除法 $b^{km} = (a^m-b^m)(-b^{(k-1)m}- a^mb^{(k-2)m}-...-a^{(k-1)m}) + a^{km}$,

$gcd(b^{km}, a^m-b^m) = gcd(a^{km}, a^m-b^m) = d$,

$d | b^{km},\ d|a^{km}, \ d | gcd(b^{km}, a^{km})=1$,所以 $d=1$,即 $gcd(b^{n-r}, a^m-b^m)=1$.

所以 $gcd(a^n-b^n, a^m-b^m) = gcd(a^m-b^m, a^{n \% m}-b^{n \% m}) = a^{gcd(n,m)} - b ^ {gcd(n,m)}$.

 (其实整个过程就是辗转相除法)

猜你喜欢

转载自www.cnblogs.com/lfri/p/11409367.html
今日推荐