「学习笔记」多项式相关

学多项式也有好久了,可是我自己还没怎么认认真真推过柿子,导致啥都不会,然后被吊打。

看来再不回顾一下就不行了啊。

多项式乘法

写了一个好看一点的\(\mathrm{NTT}\)板子,仅供参考。

inline int Add(int x, int y) { return (x + y) % Mod; }
inline int Sub(int x, int y) { return (x - y + Mod) % Mod; }
inline int Mul(int x, int y) { return 1ll * x * y % Mod; }
int fastpow(int x, int y)
{
    int ans = 1;
    for (; y; y >>= 1, x = 1ll * x * x % Mod)
        if (y & 1) ans = 1ll * ans * x % Mod;
    return ans;
}

int r[maxn], w[maxn];
void FFT(int *p, int N)
{
    for (int i = 0; i < N; i++) if (i < r[i]) std::swap(p[i], p[r[i]]);
    for (int i = 1, s = 2, t = N >> 1; i < N; i <<= 1, s <<= 1, t >>= 1)
        for (int j = 0; j < N; j += s) for (int k = 0, o = 0; k < i; ++k, o += t)
        {
            int x = p[j + k], y = 1ll * w[o] * p[i + j + k] % Mod;
            p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod;
        }
}

template<typename C>
void PolyMul(int *a, int *b, int N, int P, C cal)
{
    w[0] = 1, w[1] = fastpow(3, (Mod - 1) / N);
    for (int i = 0; i < N; i++) r[i] = (r[i >> 1] >> 1) | ((i & 1) << P);
    for (int i = 2; i < N; i++) w[i] = 1ll * w[i - 1] * w[1] % Mod;
    FFT(a, N), FFT(b, N); for (int i = 0; i < N; i++) b[i] = cal(a[i], b[i]);
    FFT(b, N); std::reverse(b + 1, b + N); int invn = fastpow(N, Mod - 2);
    for (int i = 0; i < N; i++) b[i] = 1ll * b[i] * invn % Mod;
}

泰勒展开

如果\(f(x)\)\(x_0\)处存在\(n\)阶导,那么有:
\[ f(x) = \sum_{i=0}^n \frac {f^{(i)}(x_0)} {i!} (x - x_0) ^ i + \xi \]
其中\(\xi\)是余项,当\(n\)趋近于无穷大时,\(\xi\)趋近于高阶无穷小。

比如说\(e ^ x = 1 + \frac x{1!} + \frac {x^2}{2!} + \cdots\)

牛顿迭代

首先可以知道多项式的任何一个运算都可以表示成对于一个多项式\(B(x)\)以及一个给定的函数\(F(x)\),求\(F(B(x)) \equiv 0 \pmod {x ^ n}\)

\(B_n(x)\)表示当模数是\(x ^ n\)的合法解。那么当\(n = 1\)是我们很容易可以得到结果,考虑如何用\(B_n(x)\)推到\(B_{2n}(x)\)

\(F(B_{2n}(x))\)\(B_n(x)\)处泰勒展开,我们得到\(F(B_{2n}(x)) = F(B_n(x)) + F'(B_n(x))(B_{2n}(x) - B_n(x))\)

那么我们化简一下就是:
\[ B_{2n}(x) = B_n(x) - \frac {F(B_n(x))} {F'(B_n(x))} \]
这样我们就可以倍增求解。

多项式运算

接下来均假设我们要做运算的多项式是\(A(x)\)

多项式求逆

\(F(B_n(x)) = A(x) * B_n(x) - 1 \equiv 0\)

于是:
\[ \begin{aligned} B_{2n} &= B_n(x) - \frac {A(x) * B_n(x) - 1} {A(x)} \\ &= B_n(x) - B_n(x)(A(x) * B_n(x) - 1) \\ &= 2B_n(x) - A(x) * B_n^2(x) \end{aligned} \]
注意第一步推到第二步是因为\(B_n(x)\)\(A(x)\)的逆。

void Inv(int *a, int *b, int N)
{
    static int c[maxn]; if (N == 1) return (void) (*b = fastpow(*a, Mod - 2));
    Inv(a, b, (N + 1) >> 1); int L = 1, P = -1; while (L < (N << 1)) L <<= 1, ++P;
    std::copy(a, a + N, c), std::fill(c + N, c + L, 0);
    PolyMul(c, b, L, P, [] (int a, int b) { return Mul(Sub(2, Mul(a, b)), b); });
    std::fill(b + N, b + L, 0);
}

多项式开根

ln一下再exp一下

\(F(B_n(x)) = B_n^2(x) - A(x) \equiv 0\)

于是有:
\[ B_{2n} = B_n(x) - \frac {B_n^2(x) - A(x)} {2B_n(x)} = \frac 12\left(B_n(x) + \frac {A(x)} {B_n(x)} \right) \]
可以看出多项式开根中需要套用多项式求逆。

void Sqrt(int *a, int *b, int N)
{
    static int c[maxn], d[maxn]; if (N == 1) return (void) (*b = 1);
    Sqrt(a, b, (N + 1) >> 1); int L = 1, P = -1; while (L < (N << 1)) L <<= 1, ++P;
    std::copy(a, a + N, c), std::fill(c + N, c + L, 0);
    std::fill(d, d + L, 0), Inv(b, d, N), PolyMul(c, d, L, P, Mul);
    for (int i = 0; i < N; i++) b[i] = Mul(Add(b[i], d[i]), 499122177);
}

多项式\(\ln\)

不需要牛顿迭代。
\[ \begin{aligned} \ln(A(x)) &= B(x) \\ \Rightarrow\frac {A'(x)}{A(x)} &= B'(x) \end{aligned} \]
然后\(A(x)\)就求导求逆,乘起来再积分一下就可以了。

void Ln(int *f, int *g, int N)
{
    static int A[maxn], B[maxn]; Inv(f, B, N), A[N - 1] = 0;
    for (int i = 1; i < N; i++) A[i - 1] = Mul(f[i], i);
    int L = 1, P = -1; while (L < (N << 1)) L <<= 1, ++P;
    PolyMul(A, B, L, P, Mul), g[0] = 0;
    for (int i = 1; i < N; i++) g[i] = Mul(B[i - 1], fastpow(i, Mod - 2));
    std::fill(A, A + L, 0), std::fill(B, B + L, 0);
}

多项式\(\exp\)

\(F(B_n(x)) = \ln(B_n(x)) - A(x) \equiv 0\)

推下式子可得:
\[ \begin{aligned} B_{2n}(x) &= B_n(x) - \frac {\ln(B_n(x)) - A(x)} {\frac 1 {B_n(x)}} \\ &= B_n(x)(1 - \ln(B_n(x)) + A(x)) \end{aligned} \]

void Exp(int *a, int *b, int N)
{
    static int c[maxn]; if (N == 1) return (void) (*b = 1);
    Exp(a, b, (N + 1) >> 1), Ln(b, c, N);
    int L = 1, P = -1; while (L < (N << 1)) L <<= 1, ++P;
    for (int i = 0; i < N; i++) c[i] = Sub(a[i], c[i]); c[0] = Add(c[0], 1);
    PolyMul(c, b, L, P, Mul), std::fill(b + N, b + L, 0);
}

猜你喜欢

转载自www.cnblogs.com/cj-xxz/p/11166903.html
今日推荐