[学习笔记]FFT之多项式求逆

一、引入

有时候,我们会遇到这种形式的问题:
给定一个定义域为 [ 0 , n ) 且自变量为整数的函数(数组) f ,有一个未知函数 g
给定 f g 的卷积 h ,求 g = h f
这时候要用到一个技巧——多项式求逆。

二、概念

一个 n n 1 次多项式 A 的逆元,定义为一个多项式 B ,满足:

( A B ) 1 ( mod x n )

显然 B [ 0 ] = A [ 0 ] 1 。如果暴力求是 O ( n 2 ) 的。用 FFT 可以做到 O ( n log n ) 的复杂度。

三、过程

基本思想是分治。假设已经求得了模 x n 2 的逆元 B ,那么有

A B A B 1 ( mod x n 2 )


B B 0 ( mod x n 2 )

两边同时平方:
B 2 2 B B + B 2 0 ( mod x n )

两边同乘 A
B 2 B + A B 2 0 ( mod x n )

所以得到 B 的递推式:
B = ( 2 B A B 2 ) mod x n

边界:
A [ 0 ] 1 A 1 ( mod x 1 )

x 1 一直递推到 x 2 k 2 k n )就能求出 B

四、示例

回到引入中的问题。容易发现,我们要求的就是 h × f 1
BZOJ 3456 城市规划(无向连通图计数)
我们知道,无向连通图计数的递推公式为:

f [ i ] = 2 i × ( i 1 ) 2 j = 1 i 1 f [ j ] × C i 1 j 1 × 2 ( i j ) × ( i j 1 ) 2

边界 f [ 1 ] = 1
很容易将其转化为含有 i j i j 的式子:
f [ i ] = 2 i × ( i 1 ) 2 + ( ( i 1 ) ! ) j = 1 i 1 f [ j ] ( j 1 ) ! × 2 ( i j ) × ( i j 1 ) 2 ( i j ) !

F [ i ] = f [ i ] ( i 1 ) ! G [ i ] = 2 i × ( i 1 ) 2 i ! H [ i ] = 2 i × ( i 1 ) 2 ( i 1 ) !
那么有:
F [ i ] + j = 1 i 1 F [ j ] G [ i j ] = H [ i ]

即:
j = 1 i F [ j ] G [ i j ] = H [ i ]

因此:
F G = H

用多项式求逆即可得解。

五、代码

下面给一个 NTT 的多项式求逆:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define For(i, a, b) for (i = a; i <= b; i++)
#define Pow(k, n) for (k = 1; k < n; k <<= 1)
#define Step(i, a, b, x) for (i = a; i <= b; i += x)
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int N = 1e6 + 5, PYZ = 998244353;
int n, f[N], g[N], m = 2, ff, cnt, tmp[N], cm[N], rev[N], sp[N];
int qpow(int a, int b) {
    int res = 1; while (b) b & 1 ? res = 1ll * res * a % PYZ : 0,
        a = 1ll * a * a % PYZ, b >>= 1; return res;
}
void FFT(int n, int *a, int op) {
    int i, j, k, x; For (i, 0, n - 1) if (i < rev[i]) swap(a[i], a[rev[i]]);
    x = qpow(op == 1 ? 3 : 332748118, (PYZ - 1) / n); k = n >> 1;
    while (1) {sp[k] = x; x = 1ll * x * x % PYZ; if (!k) break; k >>= 1;}
    Pow (k, n) {
        x = sp[k]; Step (i, 0, n - 1, k << 1) {
            int w = 1; For (j, 0, k - 1) {
                int u = a[i + j], v = 1ll * w * a[i + j + k] % PYZ;
                a[i + j] = (u + v) % PYZ; a[i + j + k] = (u - v + PYZ) % PYZ;
                w = 1ll * w * x % PYZ;
            }
        }
    }
}
int main() {
    int i, rp; n = read(); For (i, 0, n - 1) f[i] = read();
    g[0] = qpow(f[0], PYZ - 2); while (1) {
        ff = 1; cnt = 0; while (ff < (m << 1)) ff <<= 1, cnt++;
        For (i, 0, (m >> 1) - 1) tmp[i] = g[i]; For (i, 0, m - 1) cm[i] = f[i];
        For (i, m >> 1, ff - 1) tmp[i] = 0; For (i, m, ff - 1) cm[i] = 0;
        rp = qpow(ff, PYZ - 2); rev[0] = 0; For (i, 1, ff - 1)
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << cnt - 1);
        FFT(ff, tmp, 1); For (i, 0, ff - 1) tmp[i] = 1ll * tmp[i] * tmp[i] % PYZ;
        FFT(ff, cm, 1); For (i, 0, ff - 1) tmp[i] = 1ll * tmp[i] * cm[i] % PYZ;
        FFT(ff, tmp, -1); For (i, 0, ff - 1) tmp[i] = 1ll * tmp[i] * rp % PYZ;
        For (i, 0, (m >> 1) - 1) g[i] = 2ll * g[i] % PYZ;
        For (i, 0, m - 1) g[i] = (g[i] - tmp[i] + PYZ) % PYZ;
        if (m >= n) break; m <<= 1;
    }
    For (i, 0, n - 1) printf("%d ", g[i]); return 0;
}

猜你喜欢

转载自blog.csdn.net/xyz32768/article/details/80975460