Streaming Principal Component Analysis in Noisy Settings

论文背景:

  • 面对来袭的数据,连续样本不一定是不相关的,甚至不是同分布的。
  • 当前,大部分在线PCA都只关注准确性,而忽视时效性!
  • 噪声?数据缺失,观测有偏,重大异常?

论文内容:
在这里插入图片描述

Section 2

Online Settings
Online PCA, 就是在观察到\(x1, x2, x3, \dots, x_{t-1}\)后,“构造”一个\(k-\)维的子空间,通常用投影矩阵\(P^{(t)}\)表示——为了最小化残差\(\|x_t - P^{(t)}\|^2\)
这篇论文重点在于界的分析,考虑下面的“遗憾”(大概就是误差的意思):
\(R(T,P) = \mathop{\sum}\limits_{t=1}^{T}x_t^{\top}Px_t-\mathop{\sum}\limits_{t=1}^{T}x_t^{\top}P^{(t)}x_t\)
其中P为任意的rank-k的正交投影矩阵,T为迭代次数。
\(R(T,P)\)的界是次线性的,所以,我们可以通过\(\frac{1}{T}R(T,P)\)来计算算法到达\(\varepsilon-\)界所需的时间,从而衡量算法的优劣。
Matrix gradient descent (MGD)

  1. 将非凸条件放松为凸条件:
    \(C =\lbrace P: Tr(P):=k, 0\preceq P \preceq I, P = P^{\top} \rbrace\)
  2. \(P^{t+1} = \prod_F(P^{t} + \eta g_t^{\top})\) Here
  3. 学习后的\(P\),不一定满足原来的凸条件(投影), 故:
    \(\hat{P}^{t} = rounding(P^{t})\)

对于这个算法并不了解,姑且只能这么想了。点这里
下面是关于(遗憾)的一个界:
在这里插入图片描述

Stochastic Settings
在某些情况下,MGD算法复杂度比较高,所以,在额外的假设下,利用Oja的另外一种算法可能会比较有优势。
The additional assumption that \(x_t\) are sampled i.i.d. from some unknown distribution \(D\) and that \(\|x_t\|\leq1\) almost surely.
最近已经有相关方面的论文指出,在\(k=1\)的条件下,这个算法也可以到达次线性。
在这里插入图片描述

Section 3 corrupted gradients
在这一节,论文讲关于梯度被“污染”的情形。
Online Setting
梯度被污染的原因:

  1. 对于大数据不正确的运算
  2. 分布式和并行运算中,异步和噪声通讯导致的误差
    此时的学习单位步长为:
    \(\hat{\mathrm{g}}_t = x_tx_t^{\top}+E_t\)

给出了下列定理:
在这里插入图片描述

Stochastic Setting

被污染的原因:数据被污染,设噪声向量为\(y_t\),且与\(x_t\)独立。(k=1)
\(\hat{\mathrm{g}}_t = (x_t + y_t)(x_t + y_t)^{\top}\)
在这里插入图片描述
在这里插入图片描述

Section 4 Missing Entries

这一章,讲矩阵缺失数据的情形。
假设\(x_t\)的每个元素将按照\(q-Brtnoulli\)分布被保留,否则缺失。
在这里插入图片描述

Online Setting

此时,学习步长又变为:
\(\hat{\mathrm{g}}_t := \hat{x}_t\hat{x}_t^{\top} - z_tz_t^{\top}\)
论文中为上式取负,但更新\(P\)的时候又取负,所以我直接不变了。

有下面的界:

在这里插入图片描述

Stochastic Setting

在推导这个界的时候,似乎遇到了麻烦,新的迭代步长不能保证半正定,所以需要进行一个处理(因为证明都没看,所以不懂啊)。

给出了一个定理(k = 1):

在这里插入图片描述

Section 5 Partial Observations

本节是讲观测偏差,\(x_t\)只有\(r<d\)个元素被观测到。

下面是对步长的分析与构造,但是,我对\(z\)的构造存疑,我觉得
\(z = \sqrt{\frac{d^2-dr}{r-1}}\widetilde{x}_{i_s}e_{i_s}\)
在这里插入图片描述

Online Setting

\(\hat{\mathrm{g}}_t\)同上

有下面的界:
在这里插入图片描述

Stochastic Setting

有下面的界(k=1):

在这里插入图片描述

Section 6 Robust streaming PCA

针对异常值,探讨如何使得算法变得“健壮”。

新的regret:

\(R_{abs}(T) = \mathop{\sum}\limits_{t=1}^{T}\|x_t-P^{t}x_t\|_2-\mathop{inf}\limits_{P\in P_k} \mathop{\sum}\limits_{t=1}^{T}\|x_t-Px_t\|_2\)
for any sequence \(x_1,\ldots,x_T \in \mathbb{R}^{d}\).
新的:
\(\mathrm{g}_t=-\frac{x_tx_t^{\top}(I-P^{(t)}) + (I-P^{(t)})x_tx_t^{\top}}{2\|(I-P^{(t)})x_t\|_2}\)
denote:
\(y_t = (I-P^{(t)})x_t\) and \(c_t = \frac{\eta}{2\|y_t\|_2}\)
\(P^(t+1) = \prod_F(P^{t} + c_t(x_ty_t^{\top}+y_tx_t^{\top}))\)

从而有下面定理:

在这里插入图片描述

猜你喜欢

转载自www.cnblogs.com/MTandHJ/p/10528004.html