Manacher(马拉车算法)

这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这是非常了不起的。对于回文串想必大家都不陌生,就是正读反读都一样的字符串,比如 “bob”, “level”, “noon” 等等,那么如何在一个字符串中找出最长回文子串呢,可以以每一个字符为中心,向两边寻找回文子串,在遍历完整个数组后,就可以找到最长的回文子串。但是这个方法的时间复杂度为O(n*n),并不是很高效,下面我们来看时间复杂度为O(n)的马拉车算法。
由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上’#’,那么

bob    -->    #b#o#b#
noon    -->    #n#o#o#n# 

这样做的好处是不论原字符串是奇数还是偶数个,处理之后得到的字符串的个数都是奇数个,这样就不用分情况讨论了,而可以一起搞定。接下来我们还需要和处理后的字符串t等长的数组p,其中p[i]表示以t[i]字符为中心的回文子串的半径,若p[i] = 1,则该回文子串就是t[i]本身,那么我们来看一个简单的例子:

#1#2#2#1#2#2#
1 2 1 2 5 2 1 6 1 2 3 2 1

为啥我们关心回文子串的半径呢?看上面那个例子,以中间的 ‘1’ 为中心的回文子串 “#2#2#1#2#2#” 的半径是6,而为添加井号的回文子串为 “22122”,长度是5,为半径减1。这是个普遍的规律么?我们再看看之前的那个 “#b#o#b#”,我们很容易看出来以中间的 ‘o’ 为中心的回文串的半径是4,而 “bob"的长度是3,符合规律。再来看偶数个的情况"noon”,添加井号后的回文串为 “#n#o#o#n#”,以最中间的 ‘#’ 为中心的回文串的半径是5,而 “noon” 的长度是4,完美符合规律。所以我们只要找到了最大的半径,就知道最长的回文子串的字符个数了。只知道长度无法确定子串,我们还需要知道子串的起始位置。
我们还是先来看中间的 ‘1’ 在字符串 “#1#2#2#1#2#2#” 中的位置是7,而半径是6,貌似7-6=1,刚好就是回文子串 “22122” 在原串 “122122” 中的起始位置1。那么我们再来验证下 “bob”,“o” 在 “#b#o#b#” 中的位置是3,但是半径是4,这一减成负的了,肯定不对。所以我们应该至少把中心位置向后移动一位,才能为0啊,那么我们就需要在前面增加一个字符,这个字符不能是井号,也不能是s中可能出现的字符,所以我们暂且就用美元号。这样都不相同的话就不会改变p值了,那么末尾要不要对应的也添加呢,其实不用的,不用加的原因是字符串的结尾标识为’\0’,等于默认加过了。那此时 “o” 在 “¥#b#o#b#” 中的位置是4,半径是4,一减就是0了,貌似没啥问题。我们再来验证一下那个数字串,中间的 ‘1’ 在字符串 “¥#1#2#2#1#2#2#” 中的位置是8,而半径是6,这一减就是2了,而我们需要的是1,所以我们要除以2。之前的 “bob” 因为相减已经是0了,除以2还是0,没有问题。再来验证一下 “noon”,中间的 ‘#’ 在字符串 “$#n#o#o#n#” 中的位置是5,半径也是5,相减并除以2还是0,完美。可以任意试试其他的例子,都是符合这个规律的,最长子串的长度是半径减1,起始位置是中间位置减去半径再除以2

#include <vector>
#include <iostream>
#include <string>
using namespace std;
string Manacher(string s) {
    // Insert '#'
    string t = "$#";
    for (int i = 0; i < s.size(); ++i) {
        t += s[i];
        t += "#";
    }
    // Process t
    vector<int> p(t.size(), 0);
    int mx = 0, id = 0, resLen = 0, resCenter = 0;
    //mx是回文串能延伸到最右端的位置
    //id当前节点回文串的中心点位置
    for (int i = 1; i < t.size(); ++i) {
        p[i] = mx > i ? min(p[2 * id - i], mx - i) : 1;
        while (t[i + p[i]] == t[i - p[i]]) ++p[i];
        //变更中心点
        if (mx < i + p[i]) {
            mx = i + p[i];
            id = i;
        }
        if (resLen < p[i]) {
            resLen = p[i];
            resCenter = i;
        }
    }
    return s.substr((resCenter - resLen) /2, resLen - 1);//重点
}

int main() {
    string s1 = "122122222222222221111111111111122121212121";
    cout << Manacher(s1) << endl;
}

猜你喜欢

转载自blog.csdn.net/weixin_43870114/article/details/86774160