051泰勒展开

版权声明:本文系原创文章,没有版权,随意转载,不用告知! https://blog.csdn.net/Pro2015/article/details/84573811

这里不说什么泰勒中值定理,什么佩亚诺余项还是拉格朗日余项,直接写出通用公式:
f ( x ) = f ( x 0 ) + f ( x 0 ) ( x x 0 ) + f ( x 0 ) 2 ! ( x x 0 ) 2 + + f ( n ) ( x 0 ) n ! ( x x 0 ) n + R n ( x ) f(x) = f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \cdot\cdot\cdot + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x)

麦克劳林公式,即: x 0 = 0 x_0 = 0 ,带有佩亚诺余项的麦克劳林公式:
f ( x ) = f ( 0 ) + f ( 0 ) x + f ( 0 ) 2 ! x 2 + + f ( n ) ( 0 ) n ! x n + o ( x n ) f(x) = f(0) + f'(0)x- + \frac{f''(0)}{2!}x^2 + \cdot\cdot\cdot + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)


常用泰勒展开(麦克劳林公式)

e x 1 + x + x 2 2 ! + + x n n ! s i n x x x 3 3 ! + x 5 5 ! + + ( 1 ) n 1 x 2 n 1 ( 2 n 1 ) ! c o s x 1 x 2 2 ! + x 4 4 ! + ( 1 ) n x 2 n ( 2 n ) ! l n ( 1 + x ) x x 2 2 + x 3 3 + ( 1 ) n 1 x n n ( 1 + x ) α 1 + α x + α ( α 1 ) 2 ! x 2 + + α ( α 1 ) ( α n + 1 ) n ! x n \begin{aligned} e^x &\approx 1+x+\frac{x^2}{2!}+···+\frac{x^n}{n!}\\ \\ sinx &\approx x-\frac{x^3}{3!}+\frac{x^5}{5!}+···+(-1)^{n-1}\frac{x^{2n-1}}{(2n-1)!}\\ \\ cosx &\approx 1-\frac{x^2}{2!}+\frac{x^4}{4!}-···+(-1)^n\frac{x^{2n}}{(2n)!}\\ \\ ln(1+x) &\approx x-\frac{x^2}{2}+\frac{x^3}{3}-···+(-1)^{n-1}\frac{x^n}{n}\\ \\ (1+x)^\alpha &\approx 1+\alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 +···+\frac{\alpha(\alpha-1)···(\alpha-n+1)}{n!}x^n \end{aligned}

猜你喜欢

转载自blog.csdn.net/Pro2015/article/details/84573811
今日推荐