深度学习笔记——RNN(LSTM、GRU、双向RNN)学习总结

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mpk_no1/article/details/72875185
RNN( Recurrent Neural Networks循环神经网络)

循环神经网络的主要用途是处理和预测序列数据,在全连接神经网络或卷积神经网络中,网络结果都是从输入层到隐含层再到输出层,层与层之间是全连接或部分连接的,但每层之间的结点是无连接的。考虑这样一个问题,如果要预测句子的下一个单词是什么,一般需要用到当前单词以及前面的单词,因为句子中前后单词并不是独立的,比如,当前单词是“很”,前一个单词是“天空”,那么下一个单词很大概率是“蓝”。循环神经网络的来源就是为了刻画一个序列当前的输出与之前信息的关系。从网络结果上来说,RNN会记忆之前的信息,并利用之前的信息影响后面的输出。也就是说,RNN的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包含上一时刻隐藏层的输出。

典型的RNN结构如下图所示,对于RNN来说,一个非常重要的概念就是时刻,RNN会对于每一个时刻的输入结合当前模型的状态给出一个输出,从图中可以看出,RNN的主体结构A的输入除了来自输入层的Xt,还有一个循环的边来提供当前时刻的状态。同时A的状态也会从当前步传递到下一步。


我们将这个循环展开,可以很清晰地看到信息在隐藏层之间的传递:

链式的特征揭示了 RNN 本质上是与序列和列表相关的。他们是对于这类数据的最自然的神经网络架构。
并且 RNN 也已经被人们应用了!在过去几年中,应用 RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得一定成功,并且这个列表还在增长。

RNN的隐藏层的计算是一个全连接,


长期依赖(Long-Term Dependencies)问题

RNN 的关键点之一就是他们可以用来连接先前的信息到当前的任务上,例如使用过去的视频段来推测对当前段的理解。如果 RNN 可以做到这个,他们就变得非常有用。但是真的可以么?答案是,还有很多依赖因素。
有时候,我们仅仅需要知道先前的信息来执行当前的任务。例如,我们有一个语言模型用来基于先前的词来预测下一个词。如果我们试着预测 “the clouds are in the sky” 最后的词,我们并不需要任何其他的上下文 —— 因此下一个词很显然就应该是 sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的,RNN 可以学会使用先前的信息。

但是同样会有一些更加复杂的场景。假设我们试着去预测“I grew up in France... I speak fluent French”最后的词。当前的信息建议下一个词可能是一种语言的名字,但是如果我们需要弄清楚是什么语言,我们是需要先前提到的离当前位置很远的 France 的上下文的。这说明相关信息和当前预测位置之间的间隔就肯定变得相当的大。
不幸的是,在这个间隔不断增大时,RNN 会丧失学习到连接如此远的信息的能力。

在理论上,RNN 绝对可以处理这样的 长期依赖 问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。如果序列过长会导致优化时出现梯度消散的问题。
然而,幸运的是,LSTM 并没有这个问题!

扫描二维码关注公众号,回复: 3855679 查看本文章


LSTM 网络

Long Short Term Memory 网络—— 一般就叫做 LSTM ——是一种特殊的 RNN 类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。

LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!
所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。
LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。LSTM是一种拥有三个“门”结构的特殊网络结构。

LSTM 靠一些“门”的结构让信息有选择性地影响RNN中每个时刻的状态。所谓“门”的结构就是一个使用sigmod神经网络和一个按位做乘法的操作,这两个操作合在一起就是一个“门”结构。之所以该结构叫做门是因为使用sigmod作为激活函数的全连接神经网络层会输出一个0到1之间的值,描述当前输入有多少信息量可以通过这个结构,于是这个结构的功能就类似于一扇门,当门打开时(sigmod输出为1时),全部信息都可以通过;当门关上时(sigmod输出为0),任何信息都无法通过。

如上图所示,我们用以下几个公式来描述LSTM一个循环体的结构组成:

输入门:

遗忘门:

候选记忆单元:

当前时刻记忆单元:

输出门:

输出:



GRU网络

GRU可以看成是LSTM的变种,GRU把LSTM中的遗忘门和输入们用更新门来替代。 把cell state和隐状态ht进行合并,在计算当前时刻新信息的方法和LSTM有所不同。 下图是GRU更新ht的过程:


重置门:

更新门:

候选记忆单元:

当前时刻记忆单元:



双向RNN

在经典的循环神经网络中,状态的传输是从前往后单向的。然而,在有些问题中,当前时刻的输出不仅和之前的状态有关系,也和之后的状态相关。这时就需要双向RNN(BiRNN)来解决这类问题。例如预测一个语句中缺失的单词不仅需要根据前文来判断,也需要根据后面的内容,这时双向RNN就可以发挥它的作用。

双向RNN是由两个RNN上下叠加在一起组成的。输出由这两个RNN的状态共同决定。

从上图可以看出,双向RNN的主题结构就是两个单向RNN的结合。在每一个时刻t,输入会同时提供给这两个方向相反的RNN,而输出则是由这两个单向RNN共同决定(可以拼接或者求和等)。

同样地,将双向RNN中的RNN替换成LSTM或者GRU结构,则组成了BiLSTM和BiGRU。

猜你喜欢

转载自blog.csdn.net/mpk_no1/article/details/72875185