吴恩达 深度学习 第一课 第四周 深层神经网络搭建assignment4_1

import numpy as np
import h5py
import matplotlib.pyplot as plt
from testCases_v2 import *
from dnn_utils_v2 import sigmoid ,sigmoid_backward, relu, relu_backward

%matplotlib inline
#ipython 专用,在页面内内置构图

#.rcParams图片参数设定
plt.rcParams['figure.figsize'] = (5.0, 4.0) #设置默认图片大小
plt.rcParams['image.interpolation'] = 'nearest' #插值风格
plt.rcParams['image.cmap'] = 'gray' #颜色类型

%load_ext autoreload 
%autoreload 2 #在执行用户代码前,重新装入 软件的扩展和模块 
'''
参数
0:不执行 装入命令。
1: 只装入所有 %aimport 要装模块
2:装入所有 %aimport 不包含的模块
'''
np.random.seed(1)

导入包,设定绘图风格,设定初始随机值世界线。

def initialize_parameters(n_x,n_h,n_y):
    np.random.seed(1) #没有这句得不到预期结果
    W1=np.random.randn(n_h,n_x)*0.01
    b1=np.zeros((n_h,1))
    W2=np.random.randn(n_y,n_h)*0.01
    b2=np.zeros((n_y,1))

    assert(W1.shape==(n_h,n_x))
    assert(b1.shape==(n_h,1))
    assert(W2.shape==(n_y,n_h))
    assert(b2.shape==(n_y,1))

    parameters={'W1':W1,
                'b1':b1,
                'W2':W2,
                'b2':b2}

    return parameters

初始化模块参数值,当特定层的输入特征数,隐藏层单元数、 输出单元数确定时,输出随机初始的W1,W2、 b1、b2

parameters = initialize_parameters(2,2,1)

print("W1 = " + str(parameters["W1"]))

print("b1 = " + str(parameters["b1"]))

print("W2 = " + str(parameters["W2"]))

print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01624345 -0.00611756]
 [-0.00528172 -0.01072969]]
b1 = [[0.]
 [0.]]
W2 = [[ 0.00865408 -0.02301539]]
b2 = [[0.]]

测试:测试结果

def initialize_parameters_deep(layer_dims):
    
    np.random.seed(3)
    parameters = {}
    L = len(layer_dims)
    
    for l in range(1, L):
        parameters['W'+str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1])*0.01
        parameters['b'+str(l)] = np.zeros((layer_dims[l],1))
        
        assert(parameters['W' + str(l)].shape==(layer_dims[l],layer_dims[l-1]))
        assert(parameters['b' + str(l)].shape==(layer_dims[l],1))
        
    return parameters

初始化深层神经网络参数,layer_dims为n0、n1、n2....nm数组

初始化其每一层的W和b并放入字典patameters

parameters = initialize_parameters_deep([5,4,3])

print("W1 = " + str(parameters["W1"]))

print("b1 = " + str(parameters["b1"]))

print("W2 = " + str(parameters["W2"]))

print("b2 = " + str(parameters["b2"]))

W1 = [[ 0.01788628  0.0043651   0.00096497 -0.01863493 -0.00277388]
 [-0.00354759 -0.00082741 -0.00627001 -0.00043818 -0.00477218]
 [-0.01313865  0.00884622  0.00881318  0.01709573  0.00050034]
 [-0.00404677 -0.0054536  -0.01546477  0.00982367 -0.01101068]]
b1 = [[0.]
 [0.]
 [0.]
 [0.]]
W2 = [[-0.01185047 -0.0020565   0.01486148  0.00236716]
 [-0.01023785 -0.00712993  0.00625245 -0.00160513]
 [-0.00768836 -0.00230031  0.00745056  0.01976111]]
b2 = [[0.]
 [0.]
 [0.]]

测试通过

def linear_forward(A, W, b):
    Z = np.dot(W, A) +b
    
    assert(Z.shape == (W.shape[0], A.shape[1]))
 
    cache = (A, W, b)
    return Z,cache

线性计算,正向传播 同时缓存A、W,b到cache中, =实际上为linear_cache

A, W, b = linear_forward_test_case()

​

Z, linear_cache = linear_forward(A, W, b)

print("Z = " + str(Z))

Z = [[ 3.26295337 -1.23429987]]

测试通过

def linear_activation_forward(A_prev, W, b, activation):
    if activation == 'sigmoid':
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    if activation == 'relu':
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
    
    assert(A.shape == (W.shape[0], A_prev.shape[1]))
    
    cache = (linear_cache, activation_cache)
    
    return A, cache

正向激活函数传导,输入参数有A_prev,W,b,activation其中activation为选择激活函数,先进行线性运算输出和A和linear_cache(A,W,b),输出A_prev输出为经过激活后的A,并将计算过中的activation_cache中的Z存在cache中,因此此时纯输出cache中包含这一层的(A,W,b,Z)

A_prev, W, b = linear_activation_forward_test_case()

​

A, linear_activation_cache = linear_activation_forward(A_prev, W, b, activation='sigmoid')

print(str(A))

​

A, linear_activation_cache = linear_activation_forward(A_prev, W ,b, activation='relu')

​

print(str(A))

[[0.96890023 0.11013289]]
[[3.43896131 0.        ]]

测试通过

def L_model_forward(X, parameters):
    caches = []
    A = X
    L = len(parameters)//2
    
    for  l in range(1,L): #1-L-1层的relu激活过程
        A_prev = A
        
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b'+ str(l)]  ,'relu')
        caches.append(cache) #缓存A_prev和W和Z
    
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)], 'sigmoid')
    caches.append(cache)
    
    assert(AL.shape == (1,X.shape[1]))
    
    return AL, caches 

建立输出AL的正向传播模型

输入为X和经过初始化后的参数值,

建立caches保存cache并叠加,之后可通过序列读取。

在该函数中,输入通过1到L-1层的relu激活,最终通过L层的sigmoid激活输出最终预测值AL,并将过程中保存的cache集合成caches输出。

其中需要注意层数在通过索引中的序列。

X, parameters = L_model_forward_test_case()

AL, caches = L_model_forward(X, parameters)

print("AL = " + str(AL))

print("Length of caches list = " + str(len(caches)))

AL = [[0.17007265 0.2524272 ]]
Length of caches list = 2

测试通过

def compute_cost(AL, Y):
    m = Y.shape[1]
    for i in range(m):
        cost = -1.0/ m*np.sum(np.multiply(Y, np.log(AL)) + np.multiply((1 -Y), np.log(1 - AL)))
    cost = np.squeeze(cost)
    assert(cost.shape == ())
    return cost

损失函数计算

Y, AL = compute_cost_test_case()

print(str(compute_cost(AL,Y)))

0.41493159961539694

测试通过

#一步的线性反向传播

def linear_backward(dZ,cache):
    A_prev, W, b = cache
    
    m = A_prev.shape[1]
    
    dW = 1/ m*np.dot(dZ, A_prev.T)
    db = 1/m*np.sum(dZ ,axis = 1, keepdims =True)

    
    dA_prev = np.dot(W.T, dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW,db

已知某一层的dZ(已知dZ说明该层激活函数已经确定)

通过公式计算dW,db,并计算求得下一步dA[l-1]的结果dA_prev输出

dZ, linear_cache = linear_backward_test_case()

​

dA_prev, dW, db = linear_backward(dZ, linear_cache)

print ("dA_prev = "+ str(dA_prev))

print ("dW = " + str(dW))

print ("db = " + str(db))

dA_prev = [[ 0.51822968 -0.19517421]
 [-0.40506361  0.15255393]
 [ 2.37496825 -0.89445391]]
dW = [[-0.10076895  1.40685096  1.64992505]]
db = [[0.50629448]]

测试通过

def linear_activation_backward(dA, cache, activation):
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
    if activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
    return dA_prev, dW, db

加入激活函数的单层反向传播推导

输入为dA,可能为上一步输出的dA_prev,也可能为最后输出评价函数对A的导数

cache为当前层的缓存,activation激活函数

从cache中提取linear_cache(A,W,b), activation_cache(Z)

relu和sigmoid的反向求导得到dZ

最后有linear_backward和linear_cache(A,W,b)求得 dA_prev, dW, db并返回

AL, linear_activation_cache = linear_activation_backward_test_case()

​

dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "sigmoid")

​

print ("sigmoid:")

print ("dA_prev = "+ str(dA_prev))

print ("dW = " + str(dW))

print ("db = " + str(db) + "\n")

​

dA_prev, dW, db = linear_activation_backward(AL, linear_activation_cache, activation = "relu")

print ("relu:")

print ("dA_prev = "+ str(dA_prev))

print ("dW = " + str(dW))

print ("db = " + str(db))

sigmoid:
dA_prev = [[ 0.11017994  0.01105339]
 [ 0.09466817  0.00949723]
 [-0.05743092 -0.00576154]]
dW = [[ 0.10266786  0.09778551 -0.01968084]]
db = [[-0.05729622]]

relu:
dA_prev = [[ 0.44090989 -0.        ]
 [ 0.37883606 -0.        ]
 [-0.2298228   0.        ]]
dW = [[ 0.44513824  0.37371418 -0.10478989]]
db = [[-0.20837892]]

测试通过

def L_model_backward(AL, Y, caches):
    grads = {}
    L = len(caches)  #获取layers层数
    m = AL.shape[1]
    Y = Y.reshape(AL.shape)
    
    dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) #损失函数的导数
    
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, caches[L-1],'sigmoid' )
    
    for l in reversed(range(L-1)): #方向从L-1到1
        grads["dA" + str(l+1)] , grads["dW" + str(l+1)], grads["db" + str(l+1)] = linear_activation_backward(grads["dA" + str(l+2)], caches[l],"relu")
    
    return grads

反向传播模型的建立

由grads作为字典存储或称中求得的dA,dW,db

首先对损失函数进行求导得到dAL,由dAL和caches[L-1]也就是第L个缓存[L] sigmoid求得dA[L],dW[L],db[L]

这部分有点理解不了,dAL应该就是dA[L]???  

grads["dA" + str(l+1)] , grads["dW" + str(l+1)], grads["db" + str(l+1)]应该是不同层的,存在疑问

其实dA理论上来说顺序对即可,不输出影响梯度下降

for循环反向reversed(range相反)

AL, Y_assess, caches = L_model_backward_test_case()
grads = L_model_backward(AL, Y_assess, caches)
print ("dW1 = "+ str(grads["dW1"]))
print ("db1 = "+ str(grads["db1"]))
print ("dA1 = "+ str(grads["dA1"]))
dW1 = [[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1 = [[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
dA1 = [[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]

测试通过

def update_parameters(parameters, grads, learning_rate):
    L = len(parameters)//2
    for l in range(L):
        parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*grads["dW"+ str(l+1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*grads["db"+ str(l+1)]
    return parameters

梯度下降

parameters, grads = update_parameters_test_case()
parameters = update_parameters(parameters, grads, 0.1)

print ("W1 = "+ str(parameters["W1"]))
print ("b1 = "+ str(parameters["b1"]))
print ("W2 = "+ str(parameters["W2"]))
print ("b2 = "+ str(parameters["b2"]))

W1 = [[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1 = [[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2 = [[-0.55569196  0.0354055   1.32964895]]
b2 = [[-0.84610769]]

测试通过

猜你喜欢

转载自blog.csdn.net/weixin_42454757/article/details/81566872