《深度学习——Andrew Ng》第五课第一周编程作业_2_dinosaurus island

第二课的作业是给恐龙起名,训练集是一系列恐龙的名字,经过训练后,RNN网络可以生成新的恐龙的名字,随着训练次数的迭代,可以发现得到的名字越来越像是正常的恐龙名字。

这里有两点需要注意一下:

使用的模型RNN

图中的每个cell都把计算流程标清楚了
这里写图片描述

clip剪枝函数

使用梯度下降进行后向传播,所以存在单次迭代梯度过大的情况,这里使用函数进行梯度数值的约束,让每次的梯度值在一个阈值内。(剪枝可能不太准确,叫梯度正则化可能会好一点。。。)
这里写图片描述

程序Pycharm版

# dinosaurus island

import numpy as np
from utils import *
import random
from random import shuffle


### GRADED FUNCTION: clip
def clip(gradients, maxValue):
    '''
    Clips the gradients' values between minimum and maximum.

    Arguments:
    gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"
    maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue

    Returns:
    gradients -- a dictionary with the clipped gradients.
    '''

    dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['db'], gradients[
        'dby']

    ### START CODE HERE ###
    # clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, db, dby]. (≈2 lines)
    for gradient in [dWax, dWaa, dWya, db, dby]:
        np.clip(gradient, -1*maxValue, maxValue, out=gradient)               # 这里想要保存clip后的值要设置out参数,不能用 gradient = np.clip(gradient, -1*maxValue, maxValue)

    ### END CODE HERE ###

    gradients = {"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": db, "dby": dby}

    return gradients


# GRADED FUNCTION: sample
def sample(parameters, char_to_ix, seed):
    """
    Sample a sequence of characters according to a sequence of probability distributions output of the RNN

    Arguments:
    parameters -- python dictionary containing the parameters Waa, Wax, Wya, by, and b.
    char_to_ix -- python dictionary mapping each character to an index.
    seed -- used for grading purposes. Do not worry about it.

    Returns:
    indices -- a list of length n containing the indices of the sampled characters.
    """

    # Retrieve parameters and relevant shapes from "parameters" dictionary
    Waa, Wax, Wya, by, b = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['b']
    vocab_size = by.shape[0]
    n_a = Waa.shape[1]

    ### START CODE HERE ###
    # Step 1: Create the one-hot vector x for the first character (initializing the sequence generation). (≈1 line)
    x = np.zeros((vocab_size, 1))                          # one-hot 编码,向量长度为单词长度
    # Step 1': Initialize a_prev as zeros (≈1 line)
    a_prev = np.zeros((n_a, 1))                            # 设置a变量

    # Create an empty list of indices, this is the list which will contain the list of indices of the characters to generate (≈1 line)
    indices = []

    # Idx is a flag to detect a newline character, we initialize it to -1
    idx = -1

    # Loop over time-steps t. At each time-step, sample a character from a probability distribution and append
    # its index to "indices". We'll stop if we reach 50 characters (which should be very unlikely with a well
    # trained model), which helps debugging and prevents entering an infinite loop.
    counter = 0
    newline_character = char_to_ix['\n']

    while (idx != newline_character and counter != 50):
        # Step 2: Forward propagate x using the equations (1), (2) and (3)
        a = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, x) + b)       # 计算每个cell前向传输的输出值
        z = np.dot(Wya, a) + by
        y = softmax(z)

        # for grading purposes
        np.random.seed(counter + seed)                              # 以seed随机机制,每次生成索引
        # Step 3: Sample the index of a character within the vocabulary from the probability distribution y
        idx = np.random.choice(len(char_to_ix), p=y.ravel())        # 找到一个以y为概率分布的单词索引号

        # Append the index to "indices"
        indices.append(idx)

        # Step 4: Overwrite the input character as the one corresponding to the sampled index.
        x = np.zeros((vocab_size,1))                                # 初始化当前的ont-hot编码
        x[idx] = 1                                                  # 进行 one-hot 编码

        # Update "a_prev" to be "a"
        a_prev = a

        # for grading purposes
        seed += 1
        counter += 1

    ### END CODE HERE ###

    if (counter == 50):
        indices.append(char_to_ix['\n'])

    return indices


# GRADED FUNCTION: optimize
def optimize(X, Y, a_prev, parameters, learning_rate=0.01):
    """
    Execute one step of the optimization to train the model.

    Arguments:
    X -- list of integers, where each integer is a number that maps to a character in the vocabulary.
    Y -- list of integers, exactly the same as X but shifted one index to the left.
    a_prev -- previous hidden state.
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        b --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    learning_rate -- learning rate for the model.

    Returns:
    loss -- value of the loss function (cross-entropy)
    gradients -- python dictionary containing:
                        dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
                        dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
                        dWya -- Gradients of hidden-to-output weights, of shape (n_y, n_a)
                        db -- Gradients of bias vector, of shape (n_a, 1)
                        dby -- Gradients of output bias vector, of shape (n_y, 1)
    a[len(X)-1] -- the last hidden state, of shape (n_a, 1)
    """

    ### START CODE HERE ###

    # Forward propagate through time (≈1 line)
    loss, cache = rnn_forward(X, Y, a_prev, parameters)

    # Backpropagate through time (≈1 line)
    gradients, a = rnn_backward(X, Y, parameters, cache)

    # Clip your gradients between -5 (min) and 5 (max) (≈1 line)
    gradients = clip(gradients = gradients, maxValue = 5)

    # Update parameters (≈1 line)
    parameters = update_parameters(parameters, gradients, learning_rate)

    ### END CODE HERE ###

    return loss, gradients, a[len(X) - 1]


# GRADED FUNCTION: model
def model(data, ix_to_char, char_to_ix, num_iterations=35000, n_a=50, dino_names=7, vocab_size=27):
    """
    Trains the model and generates dinosaur names.

    Arguments:
    data -- text corpus
    ix_to_char -- dictionary that maps the index to a character
    char_to_ix -- dictionary that maps a character to an index
    num_iterations -- number of iterations to train the model for
    n_a -- number of units of the RNN cell
    dino_names -- number of dinosaur names you want to sample at each iteration.
    vocab_size -- number of unique characters found in the text, size of the vocabulary

    Returns:
    parameters -- learned parameters
    """

    # Retrieve n_x and n_y from vocab_size
    n_x, n_y = vocab_size, vocab_size

    # Initialize parameters
    parameters = initialize_parameters(n_a, n_x, n_y)

    # Initialize loss (this is required because we want to smooth our loss, don't worry about it)
    loss = get_initial_loss(vocab_size, dino_names)

    # Build list of all dinosaur names (training examples).
    with open("dinos.txt") as f:
        examples = f.readlines()
    examples = [x.lower().strip() for x in examples]

    # Shuffle list of all dinosaur names
    shuffle(examples)

    # Initialize the hidden state of your LSTM
    a_prev = np.zeros((n_a, 1))

    # Optimization loop
    for j in range(num_iterations):

        ### START CODE HERE ###

        # Use the hint above to define one training example (X,Y) (≈ 2 lines)
        index = j % len(examples)
        X = [None] + [char_to_ix[i] for i in examples[index]]
        Y = X[1:] + [char_to_ix['\n']]

        # Perform one optimization step: Forward-prop -> Backward-prop -> Clip -> Update parameters
        # Choose a learning rate of 0.01
        curr_loss, gradients, a_prev = optimize(X=X, Y=Y, a_prev=a_prev, parameters=parameters, learning_rate=0.01)

        ### END CODE HERE ###

        # Use a latency trick to keep the loss smooth. It happens here to accelerate the training.
        loss = smooth(loss, curr_loss)

        # Every 2000 Iteration, generate "n" characters thanks to sample() to check if the model is learning properly
        if j % 2000 == 0:

            print('Iteration: %d, Loss: %f' % (j, loss) + '\n')

            # The number of dinosaur names to print
            seed = 0
            for name in range(dino_names):
                # Sample indices and print them
                sampled_indices = sample(parameters, char_to_ix, seed)
                print_sample(sampled_indices, ix_to_char)

                seed += 1  # To get the same result for grading purposed, increment the seed by one.

            print('\n')

    return parameters



if __name__ == '__main__':


    data = open('dinos.txt', 'r').read()
    data= data.lower()
    chars = list(set(data))
    data_size, vocab_size = len(data), len(chars)
    print('There are %d total characters and %d unique characters in your data.' % (data_size, vocab_size))

    char_to_ix = { ch:i for i,ch in enumerate(sorted(chars)) }
    ix_to_char = { i:ch for i,ch in enumerate(sorted(chars)) }
    print(ix_to_char)

    np.random.seed(2)
    n, n_a = 20, 100
    a0 = np.random.randn(n_a, 1)
    i0 = 1  # first character is ix_to_char[i0]
    Wax, Waa, Wya = np.random.randn(n_a, vocab_size), np.random.randn(n_a, n_a), np.random.randn(vocab_size, n_a)
    b, by = np.random.randn(n_a, 1), np.random.randn(vocab_size, 1)
    parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "b": b, "by": by}

    indices = sample(parameters, char_to_ix, 0)
    print("Sampling:")
    print("list of sampled indices:", indices)
    print("list of sampled characters:", [ix_to_char[i] for i in indices])

    np.random.seed(1)
    vocab_size, n_a = 27, 100
    a_prev = np.random.randn(n_a, 1)
    Wax, Waa, Wya = np.random.randn(n_a, vocab_size), np.random.randn(n_a, n_a), np.random.randn(vocab_size, n_a)
    b, by = np.random.randn(n_a, 1), np.random.randn(vocab_size, 1)
    parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "b": b, "by": by}
    X = [12, 3, 5, 11, 22, 3]
    Y = [4, 14, 11, 22, 25, 26]

    loss, gradients, a_last = optimize(X, Y, a_prev, parameters, learning_rate=0.01)
    print("Loss =", loss)
    print("gradients[\"dWaa\"][1][2] =", gradients["dWaa"][1][2])
    print("np.argmax(gradients[\"dWax\"]) =", np.argmax(gradients["dWax"]))
    print("gradients[\"dWya\"][1][2] =", gradients["dWya"][1][2])
    print("gradients[\"db\"][4] =", gradients["db"][4])
    print("gradients[\"dby\"][1] =", gradients["dby"][1])
    print("a_last[4] =", a_last[4])

    parameters = model(data, ix_to_char, char_to_ix, num_iterations=35000)

    ##
    # print_callback = LambdaCallback(on_epoch_end=on_epoch_end)
    #
    # model.fit(x, y, batch_size=128, epochs=1, callbacks=[print_callback])
    #
    # # Run this cell to try with different inputs without having to re-train the model
    # generate_output()

结果

下面是RNN在训练的不同阶段,输出的名字:

这里写图片描述

这里写图片描述

这里写图片描述

猜你喜欢

转载自blog.csdn.net/sinat_34022298/article/details/80209139