逻辑回归--预测64*64*3图像 二分类

import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage

def load_dataset():
    train_dataset = h5py.File('train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:])  # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # your train set labels
    
    test_dataset = h5py.File('test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:])  # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:])  # your test set labels
  
    classes = np.array(test_dataset["list_classes"][:])  # the list of classes
  
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
  
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

# sigmoid函数
def sigmoid(z):
    return 1 / (1 + np.exp(-z))
  
# 参数初始化函数
def initialize_with_zeros(dim):
    w = np.zeros((dim, 1))      # 权重
    b = 0                       # 偏置
    assert (w.shape == (dim, 1))
    assert (isinstance(b, float) or isinstance(b, int))
    return w, b
  
# 反向、前向传播函数
def propagate(w, b, X, Y):
    """
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat) of size (1, number of examples)
    Return:
    cost -- negative log-likelihood cost for logistic regression
    dw -- gradient of the loss with respect to w, thus same shape as w
    db -- gradient of the loss with respect to b, thus same shape as b
    """
    m = X.shape[1]                      # 样本数目
    A = sigmoid(np.dot(w.T, X) + b)     # 激活函数
    cost = -np.sum(np.dot(Y, np.log(A).T) + np.dot((1 - Y), np.log(1 - A).T)) / m  # 计算cost
    dw = np.dot(X, (A - Y).T) / m       # 计算w的梯度
    db = np.sum(A - Y) / m              # 计算b的梯度
  
    assert (dw.shape == w.shape)
    assert (db.dtype == float)
    cost = np.squeeze(cost)
    assert (cost.shape == ())
  
    grads = {"dw": dw, "db": db}
  
    return grads, cost
  
# 最优化函数
def optimize(w, b, X, Y, num_iterations, learning_rate, print_cost=False):
    """
    This function optimizes w and b by running a gradient descent algorithm
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of shape (num_px * num_px * 3, number of examples)
    Y -- true "label" vector (containing 0 if non-cat, 1 if cat), of shape (1, number of examples)
    num_iterations -- number of iterations of the optimization loop
    learning_rate -- learning rate of the gradient descent update rule
    print_cost -- True to print the loss every 100 steps
    Returns:
    params -- dictionary containing the weights w and bias b
    grads -- dictionary containing the gradients of the weights and bias with respect to the cost function
    costs -- list of all the costs computed during the optimization, this will be used to plot the learning curve.
    """
    costs = []
    for i in range(num_iterations):
        grads, cost = propagate(w, b, X, Y)
  
        dw = grads["dw"]
        db = grads["db"]
        w = w - learning_rate * dw      # 更新权重
        b = b - learning_rate * db      # 更新偏置
  
        if i % 100 == 0:
            costs.append(cost)
        if print_cost and i % 100 == 0:
            print("Cost after iteration %i: %f" % (i, cost))
    params = {"w": w, "b": b}
    grads = {"dw": dw, "db": db}
  
    return params, grads, costs
  
# 预测函数
def predict(w, b, X):
    '''
    Predict whether the label is 0 or 1 using learned logistic regression parameters (w, b)
    Arguments:
    w -- weights, a numpy array of size (num_px * num_px * 3, 1)
    b -- bias, a scalar
    X -- data of size (num_px * num_px * 3, number of examples)
    Returns:
    Y_prediction -- a numpy array (vector) containing all predictions (0/1) for the examples in X
    '''
    m = X.shape[1]
    Y_prediction = np.zeros((1, m))
    w = w.reshape(X.shape[0], 1)
    A = sigmoid(np.dot(w.T, X) + b)
  
    for i in range(A.shape[1]):
        if A[:, i] > 0.5:
            Y_prediction[:, i] = 1
        else:
            Y_prediction[:, i] = 0
  
    assert (Y_prediction.shape == (1, m))
  
    return Y_prediction
  
# 模型打包
def model(X_train, Y_train, X_test, Y_test, num_iterations=2000, learning_rate=0.5, print_cost=False):
    """
    Builds the logistic regression model by calling the function you've implemented previously
    Arguments:
    X_train -- training set represented by a numpy array of shape (num_px * num_px * 3, m_train)
    Y_train -- training labels represented by a numpy array (vector) of shape (1, m_train)
    X_test -- test set represented by a numpy array of shape (num_px * num_px * 3, m_test)
    Y_test -- test labels represented by a numpy array (vector) of shape (1, m_test)
    num_iterations -- hyperparameter representing the number of iterations to optimize the parameters
    learning_rate -- hyperparameter representing the learning rate used in the update rule of optimize()
    print_cost -- Set to true to print the cost every 100 iterations
    Returns:
    d -- dictionary containing information about the model.
    """
    w, b = initialize_with_zeros(64 * 64 * 3)       # 参数初始化
    parameters, grads, costs = optimize(w, b, X_train, Y_train, num_iterations, learning_rate, print_cost=False)
  
    w = parameters["w"]
    b = parameters["b"]
        
    Y_prediction_test = predict(w, b, X_test)
    Y_prediction_train = predict(w, b, X_train)
  
    print("train accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_train - Y_train)) * 100))
    print("test accuracy: {} %".format(100 - np.mean(np.abs(Y_prediction_test - Y_test)) * 100))
  
    d = {"costs": costs,
         "Y_prediction_test": Y_prediction_test,
         "Y_prediction_train": Y_prediction_train,
         "w": w,
         "b": b,
         "learning_rate": learning_rate,
         "num_iterations": num_iterations}
  
    return d
# 载入数据,处理数据
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
m_train = train_set_x_orig.shape[0]     # 训练样本数目
m_test = test_set_x_orig.shape[0]       # 测试样本数目
num_px = train_set_x_orig.shape[1]      # 图像的高度(高度=宽度)
# 图片为彩色三通道,将三通道像素展开成1维
train_set_x_flatten = train_set_x_orig.reshape(m_train, -1).T
test_set_x_flatten = test_set_x_orig.reshape(m_test, -1).T
# 标准化数据
train_set_x = train_set_x_flatten/255.
test_set_x = test_set_x_flatten/255.

#训练并预测 一种学习率下的学习效果
d = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 2000, learning_rate = 0.005, print_cost = True)
 
costs = np.squeeze(d['costs']) 
plt.plot(costs) 
plt.ylabel('cost') 
plt.xlabel('iterations (per hundreds)') 
plt.title("Learning rate =" + str(d["learning_rate"])) 
plt.show()

# 训练并预测 多种学习率下的学习效果
# learning_rates = [0.01, 0.001, 0.0001] 
# models = {} 
# for i in learning_rates: 
#     print ("learning rate is: " + str(i))
#     models[str(i)] = model(train_set_x, train_set_y, test_set_x, test_set_y, num_iterations = 1500, learning_rate = i, print_cost = False) 
#     print ('\n' + "-------------------------------------------------------" + '\n') 
# for i in learning_rates: 
#     plt.plot(np.squeeze(models[str(i)]["costs"]), label= str(models[str(i)]["learning_rate"])) 
# plt.ylabel('cost') 
# plt.xlabel('iterations') 
# legend = plt.legend(loc='upper center', shadow=True) 
# frame = legend.get_frame() 
# frame.set_facecolor('0.90') 
# plt.show()

单学习率:

train accuracy: 99.04306220095694 %
test accuracy: 70.0 %

多学习率:

learning rate is: 0.01
train accuracy: 99.52153110047847 %
test accuracy: 68.0 %

-------------------------------------------------------

learning rate is: 0.001
train accuracy: 88.99521531100478 %
test accuracy: 64.0 %

-------------------------------------------------------

learning rate is: 0.0001
train accuracy: 68.42105263157895 %
test accuracy: 36.0 %

-------------------------------------------------------

猜你喜欢

转载自blog.csdn.net/zhuisaozhang1292/article/details/81055305