[机器学习]正则化方法

       首先了解一下正则性(regularity),正则性衡量了函数光滑的程度,正则性越高,函数越光滑。(光滑衡量了函数的可导性,如果一个函数是光滑函数,则该函数无穷可导,即任意n阶可导)。

        机器学习中几乎都可以看到损失函数后面会添加一个额外项,常用的额外项一般有两种,一般英文称作1-norm2

-norm,中文称作L1正则化L2正则化,或者L1范数L2范数

        L1正则化和L2正则化可以看做是损失函数的惩罚项。所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)

       正则化是为了解决过拟合问题。在Andrew Ng的机器学习视频中有提到。解决过拟合的两种方法:

      方法一:尽量减少选取变量的数量。人工检查每一个变量,并以此来确定哪些变量更为重要,然后,保留那些更为重要的特征变量。显然这种做法需要对问题足够了解,需要专业经验或先验知识。因此,决定哪些变量应该留下不是一件容易的事情。此外,当你舍弃一部分特征变量时,你也舍弃了问题中的一些信息。例如,也许所有的特征变量对于预测房价都是有用的,我们实际上并不想舍弃一些信息或者说舍弃这些特征变量。

      最好的做法是采取某种约束可以自动选择重要的特征变量,自动舍弃不需要的特征变量。

    方法二:正则化。采用正则化方法会自动削弱不重要的特征变量,自动从许多的特征变量中”提取“重要的特征变量,减小特征变量的数量级。这个方法非常有效,当我们有很多特征变量时,其中每一个变量都能对预测产生一点影响。正如在房价预测的例子中看到的那样,我们可以有很多特征变量,其中每一个变量都是有用的,因此我们不希望把它们删掉,这就导致了正则化概念的发生。


L1 regularization

在原始的代价函数后面加上一个L1正则化项,即所有权重w的绝对值的和,乘以λ/n(这里不像L2正则化项那样,需要再乘以1/2,具体原因上面已经说过。)

同样先计算导数:

上式中sgn(w)表示w的符号。那么权重w的更新规则为:

比原始的更新规则多出了η * λ * sgn(w)/n这一项。当w为正时,更新后的w变小。当w为负时,更新后的w变大——因此它的效果就是让w往0靠,使网络中的权重尽可能为0,也就相当于减小了网络复杂度,防止过拟合。

另外,上面没有提到一个问题,当w为0时怎么办?当w等于0时,|W|是不可导的,所以我们只能按照原始的未经正则化的方法去更新w,这就相当于去掉η*λ*sgn(w)/n这一项,所以我们可以规定sgn(0)=0,这样就把w=0的情况也统一进来了。(在编程的时候,令sgn(0)=0,sgn(w>0)=1,sgn(w<0)=-1)


L2 regularization(权重衰减)

L2正则化就是在代价函数后面再加上一个正则化项:

C0代表原始的代价函数,后面那一项就是L2正则化项,它是这样来的:所有参数w的平方的和,除以训练集的样本大小n。λ就是正则项系数,权衡正则项与C0项的比重。另外还有一个系数1/2,1/2经常会看到,主要是为了后面求导的结果方便,后面那一项求导会产生一个2,与1/2相乘刚好凑整。

L2正则化项是怎么避免overfitting的呢?我们推导一下看看,先求导:

可以发现L2正则化项对b的更新没有影响,但是对于w的更新有影响:

在不使用L2正则化时,求导结果中w前系数为1,现在w前面系数为 1−ηλ/n ,因为η、λ、n都是正的,所以 1−ηλ/n小于1,它的效果是减小w,这也就是权重衰减(weight decay)的由来。当然考虑到后面的导数项,w最终的值可能增大也可能减小。

另外,需要提一下,对于基于mini-batch的随机梯度下降,w和b更新的公式跟上面给出的有点不同:

对比上面w的更新公式,可以发现后面那一项变了,变成所有导数加和,乘以η再除以m,m是一个mini-batch中样本的个数。

到目前为止,我们只是解释了L2正则化项有让w“变小”的效果,但是还没解释为什么w“变小”可以防止overfitting?一个所谓“显而易见”的解释就是:更小的权值w,从某种意义上说,表示网络的复杂度更低,对数据的拟合刚刚好(这个法则也叫做奥卡姆剃刀),而在实际应用中,也验证了这一点,L2正则化的效果往往好于未经正则化的效果。当然,对于很多人(包括我)来说,这个解释似乎不那么显而易见,所以这里添加一个稍微数学一点的解释(引自知乎):

过拟合的时候,拟合函数的系数往往非常大,为什么?如下图所示,过拟合,就是拟合函数需要顾忌每一个点,最终形成的拟合函数波动很大。在某些很小的区间里,函数值的变化很剧烈。这就意味着函数在某些小区间里的导数值(绝对值)非常大,由于自变量值可大可小,所以只有系数足够大,才能保证导数值很大。

而正则化是通过约束参数的范数使其不要太大,所以可以在一定程度上减少过拟合情况。


一般回归分析中回归w

表示特征的系数,从上式可以看到正则化项是对系数做了处理(限制)。

L1正则化和L2正则化的说明如下:

  1. L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1
  2. L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2

那添加L1和L2正则化有什么用?下面是L1正则化和L2正则化的作用,这些表述可以在很多文章中找到。

  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

稀疏模型与特征选择

上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?

稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0. 通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。



L1和L2正则化的直观理解

这部分内容将解释为什么L1正则化可以产生稀疏模型(L1是怎么让系数等于零的),以及为什么L2正则化可以防止过拟合

L1正则化和特征选择

假设有如下带L1正则化的损失函数:

J=J0+αw|w|(1)

其中 J0是原始的损失函数,加号后面的一项是L1正则化项, α是正则化系数。注意到L1正则化是权值的 绝对值之和J是带有绝对值符号的函数,因此 J是不完全可微的。机器学习的任务就是要通过一些方法(比如梯度下降)求出损失函数的最小值。当我们在原始损失函数 J0后添加L1正则化项时,相当于对 J0做了一个约束。令 L=αw|w|,则 J=J0+L,此时我们的任务变成 L约束下求出J0取最小值的解。考虑二维的情况,即只有两个权值 w1w2,此时 L=|w1|+|w2|对于梯度下降法,求解 J0的过程可以画出等值线,同时L1正则化的函数 L也可以在 w1w2的二维平面上画出来。如下图:

@图1 L1正则化
图1 L1正则化

图中等值线是J0

的等值线,黑色方形是 L函数的图形。在图中,当 J0等值线与 L图形首次相交的地方就是最优解。上图中 J0LL的一个顶点处相交,这个顶点就是最优解。注意到这个顶点的值是 (w1,w2)=(0,w)。可以直观想象,因为 L函数有很多『突出的角』(二维情况下四个,多维情况下更多), J0与这些角接触的机率会远大于与 L

其它部位接触的机率,而在这些角上,会有很多权值等于0,这就是为什么L1正则化可以产生稀疏模型,进而可以用于特征选择。

而正则化前面的系数α

,可以控制 L图形的大小。 α越小, L的图形越大(上图中的黑色方框); α越大, L的图形就越小,可以小到黑色方框只超出原点范围一点点,这是最优点的值 (w1,w2)=(0,w)中的 w

可以取到很小的值。

类似,假设有如下带L2正则化的损失函数:

J=J0+αww2(2)

同样可以画出他们在二维平面上的图形,如下:

@图2 L2正则化
图2 L2正则化

二维平面下L2正则化的函数图形是个圆,与方形相比,被磨去了棱角。因此J0

L相交时使得 w1w2

等于零的机率小了许多,这就是为什么L2正则化不具有稀疏性的原因。

L2正则化和过拟合

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

那为什么L2正则化可以获得值很小的参数?

以线性回归中的梯度下降法为例。假设要求的参数为θ

hθ(x)

是我们的假设函数,那么线性回归的代价函数如下:

J(θ)=12mi=1m(hθ(x(i))y(i))(3)

那么在梯度下降法中,最终用于迭代计算参数 θ的迭代式为:
θj:=θjα1mi=1m(hθ(x(i))y(i))x(i)j(4)

其中 α是learning rate. 上式是没有添加L2正则化项的迭代公式,如果在原始代价函数之后添加L2正则化,则迭代公式会变成下面的样子:
θj:=θj(1αλm)α1mi=1m(hθ(x(i))y(i))x(i)j(5)

其中 λ就是正则化参数。从上式可以看到,与未添加L2正则化的迭代公式相比,每一次迭代, θj都要先乘以一个小于1的因子,从而使得 θj不断减小,因此总得来看, θ是不断减小的。

最开始也提到L1正则化一定程度上也可以防止过拟合。之前做了解释,当L1的正则化系数很小时,得到的最优解会很小,可以达到和L2正则化类似的效果。

正则化参数的选择

L1正则化参数

通常越大的λ

可以让代价函数在参数为0时取到最小值。下面是一个简单的例子,这个例子来自Quora上的问答。为了方便叙述,一些符号跟这篇帖子的符号保持一致。

假设有如下带L1正则化项的代价函数:

F(x)=f(x)+λ||x||1

其中 x是要估计的参数,相当于上文中提到的 w以及 θ. 注意到L1正则化在某些位置是不可导的,当 λ足够大时可以使得 F(x)x=0时取到最小值。如下图:

@图3 L1正则化参数的选择
图3 L1正则化参数的选择

分别取λ=0.5

λ=2,可以看到越大的 λ越容易使 F(x)x=0

时取到最小值。

L2正则化参数

从公式5可以看到,λ

越大,θj衰减得越快。另一个理解可以参考图2,λ越大,L2圆的半径越小,最后求得代价函数最值时各参数也会变得很小。


参考: https://blog.csdn.net/jinping_shi/article/details/52433975

猜你喜欢

转载自blog.csdn.net/zwqjoy/article/details/79806989