C语言---数据结构实验---哈夫曼树及哈夫曼编码的算法实现---图的基本操作

写在前面

本篇实验代码非本人写,代码源自外部,经调试解决了部分warning和error后在本地vs上可以正常运行,如有运行失败可换至vs

未来会重构实现该两个实验


哈夫曼树及哈夫曼编码的算法实现

实验内容

内容要求:

1、初始化(Init):能够对输入的任意长度的字符串s进行统计,统计每个字符的频度,并建立哈夫曼树
2、建立编码表(CreateTable):利用已经建好的哈夫曼树进行编码,并将每个字符的编码输出。
3、编码(Encoding):根据编码表对输入的字符串进行编码,并将编码后的字符串输出。
4、译码(Decoding):利用已经建好的哈夫曼树对编码后的字符串进行译码,并输出译码结果。

测试数据:
输入字符串“thisprogramismyfavourite”,完成这28个字符的编码和译码。

代码实现

#include<iostream>
#include<string.h>
#include<queue>
#define MAX 10000 
using namespace std;
char a[100], buff[1024], p;
typedef struct
{
    
    
	char letter, * code;
	int weight;
	int parent, lchild, rchild;
}HTNode, * HuffmanTree;

int n;
char coding[100];

int Min(HuffmanTree& HT, int i)
{
    
    
	int j;
	int k = MAX;
	int flag=0;
	for (j = 0; j <= i; ++j)
	{
    
    
		if (HT[j].weight < k && HT[j].parent == 0)
		{
    
    
			k = HT[j].weight;
			flag = j;
		}
	}
	HT[flag].parent = 1;
	return flag;
}

void Select(HuffmanTree& HT, int i, int& s1, int& s2)
{
    
    
	s1 = Min(HT, i);
	s2 = Min(HT, i);
}

void CreateHuffmanTree(HuffmanTree& HT, char t[], int w[])
{
    
    
	int m;
	int i, s1, s2;
	if (n <= 1)
		return;
	m = 2 * n - 1; 
	HT = new HTNode[m + 1];
	for (i = 0; i < n; i++)
	{
    
    
		char arr[] = "0";
		char* pa = arr;
		HT[i].code = pa;
		HT[i].parent = 0;
		HT[i].lchild = -1;
		HT[i].rchild = -1;
		HT[i].letter = t[i];
		HT[i].weight = w[i];
	}
	for (i = n; i <= m; i++)
	{
    
    
		char arr[] = "0";
		char* pa = arr;
		HT[i].code = pa;
		HT[i].parent = 0;
		HT[i].lchild = -1;
		HT[i].rchild = -1;
		HT[i].letter = ' ';
		HT[i].weight = 0;
	}
	cout << "********************************" << endl;
	for (i = n; i < m; i++)
	{
    
    
		Select(HT, i - 1, s1, s2);

		HT[s1].parent = i;
		HT[s2].parent = i;
		HT[i].lchild = s1;
		HT[i].rchild = s2;
		HT[i].weight = HT[s1].weight + HT[s2].weight;
	}
}

void CreatHuffmanCode(HuffmanTree HT)
{
    
    
	int start, c, f;
	int i;
	char* cd = new char[n];
	cd[n - 1] = '\0';
	cout << "字符编码为:" << endl;
	for (i = 0; i < n; i++)
	{
    
    
		start = n - 1;
		c = i;
		f = HT[i].parent;
		while (f != 0) 
		{
    
    
			--start;
			if (HT[f].lchild == c) 
			{
    
    
				cd[start] = '0';
			}
			else 
			{
    
    
				cd[start] = '1';
			}
			c = f;
			f = HT[f].parent;
		}
		HT[i].code = new char[n - start];
		strcpy(HT[i].code, &cd[start]);
		cout << HT[i].letter << ":" << HT[i].code << endl;
	}
	delete[] cd;
}

void HuffmanTreeDecode(HuffmanTree HT, char cod[], int b)  
{
    
    
	char sen[100];
	char temp[50];
	char voidstr[] = " ";
	int t = 0;
	int s = 0;
	int count = 0;
	for (int i = 0; i < b; i++)
	{
    
    
		temp[t++] = cod[i];
		temp[t] = '\0';
		for (int j = 0; j < n; j++) 
		{
    
    
			if (!strcmp(HT[j].code, temp)) 
			{
    
    
				sen[s] = HT[j].letter;
				s++;
				count += t;
				strcpy(temp, voidstr);
				t = 0;
				break;
			}
		}
	}
	if (t == 0) 
	{
    
    
		sen[s] = '\0';
		cout << "译码为:" << endl;
		cout << sen << endl;
	}
	else 
	{
    
    
		cout << "二进制源码有错!从第" << count + 1 << "位开始" << endl;
	}
}

int main()
{
    
    
	HuffmanTree HT;
	int b[100]={
    
    0};
	int i, j;
	int symbol = 1, x, k;
	cout << "请输入一段文字:";
	cin >> buff;
	int len = (int)strlen(buff);
	for (i = 0; i < len; i++)
	{
    
    
		for (j = 0; j < n; j++)
		{
    
    
			if (a[j] == buff[i])
			{
    
    
				b[j] = b[j] + 1;
				break;
			}
		}
		if (j >= n)
		{
    
    
			a[n] = buff[i];
			b[n] = 1;
			n++;
		}
	}
	cout << "字符和权值信息如下" << endl;
	for (i = 0; i < n; i++)
	{
    
    
		cout << "字符:" << a[i] << "  权值:" << b[i] << endl;
	}
	CreateHuffmanTree(HT, a, b);
	CreatHuffmanCode(HT);
	cout << "文字编码为:\n";
	for (int i = 0; i < len; i++)
	{
    
    
		for (int j = 0; j < n; j++)
		{
    
    
			if (buff[i] == HT[j].letter)
			{
    
    
				cout << HT[j].code;
				break;
			}
		}
	}
	cout << "\n译码:" << endl;
	while (1)
	{
    
    
		cout << "请输入要译码的二进制字符串,输入'#'结束:";
		x = 1;
		k = 0; 
		symbol = 1;
		while (symbol) 
		{
    
    
			cin >> p;
			if (p != '1' && p != '0' && p != '#') 
			{
    
    
				x = 0;
			}
			coding[k] = p;
			if (p == '#')
				symbol = 0;
			k++;
		}
		if (x == 1) 
		{
    
    
			HuffmanTreeDecode(HT, coding, k - 1);
		}
		else 
		{
    
    
			cout << "有非法字符!" << endl;
		}
		cout << "是否继续?(Y/N):";
		cin >> p;
		if (p == 'y' || p == 'Y')
			continue;
		else
			break;
	}
	return 0;
}

图的基本操作

实验内容

分别用邻接矩阵和邻接表对如下有向图实现:
1.输出存储结果;
2.计算各结点的出度和入度,并输出;
3.实现图的深度优先遍历和广度优先遍历,并输出。

在这里插入图片描述

代码实现

#include<stdio.h>
#include<stdlib.h>

#define MAXVEX 50
int visit[MAXVEX];
int in_deg[MAXVEX];//入度
int out_deg[MAXVEX];//出度 

typedef struct
{
    
    
	int vertices[MAXVEX];
	int arc[MAXVEX][MAXVEX];
	int vexnum, arcnum;
}MGraph;

typedef struct queue
{
    
    
	int* pBase;
	int front, rear;
}QUEUE;

void init_queue(QUEUE* Q)
{
    
    
	Q->pBase = (int*)malloc((sizeof(int)) * MAXVEX);
	Q->front = 0;
	Q->rear = 0;
}

bool isfull_queue(QUEUE* Q)
{
    
    
	if (((Q->rear + 1) % MAXVEX) == Q->front)
		return true;
	else
		return false;
}

bool isempty_queue(QUEUE* Q)
{
    
    
	if (Q->rear == Q->front)
		return true;
	else
		return false;
}

void in_queue(QUEUE* Q, int val)
{
    
    
	if (isfull_queue(Q))
		return;
	Q->pBase[Q->rear] = val;
	Q->rear = (Q->rear + 1) % MAXVEX;
}

int out_queue(QUEUE* Q)
{
    
    
	int temp = 0;
	if (isempty_queue(Q))
		return 0;
	temp = Q->pBase[Q->front];
	Q->front = (Q->front + 1) % MAXVEX;
	return temp;
}

void BFS(MGraph G, QUEUE* Q, int v)
{
    
    
	if (!visit[v]) {
    
    
		visit[v] = 1;
		printf("%d  ", G.vertices[v]);
		in_queue(Q, v);
	}
	while (!isempty_queue(Q)) {
    
    
		int temp = out_queue(Q);
		for (int i = 0; i < G.vexnum; i++) {
    
    
			if (G.arc[temp][i] != 0 && !visit[i]) {
    
    
				visit[i] = 1;
				printf("%d  ", G.vertices[i]);
				in_queue(Q, i);
			}
		}
	}
}

void BFST(MGraph G, QUEUE* Q)
{
    
    
	printf("\nBFS的遍历:");
	int i = 0;
	for (i = 0; i < G.arcnum; i++)
		visit[i] = 0;
	for (i = 0; i < G.vexnum; i++) {
    
    
		if (!visit[i])  BFS(G, Q, i);
	}
}

int LocateVex(MGraph G, int v)
{
    
    
	for (int i = 0; i < G.vexnum; i++) {
    
    
		if (G.vertices[i] == v)
			return i;
	}
	return 0;
}

void CreatMGraph(MGraph* G)
{
    
    
	int i = 0, j = 0;
	printf("请分别输入顶点数和边数: \n");
	scanf("%d%d", &(G->vexnum), &(G->arcnum));
	printf("请输入顶点信息:\n");
	for (i = 0; i < G->vexnum; i++)
		scanf("%d", &(G->vertices[i]));
	for (i = 0; i < G->vexnum; i++) {
    
    
		for (j = 0; j < G->vexnum; j++)
			G->arc[i][j] = 0;
	}
	printf("请输入构成边的两个顶点:  \n");
	for (i = 0; i < G->arcnum; i++) {
    
    
		int num, num1;
		scanf("%d%d", &num, &num1);
		int j = LocateVex(*G, num);
		int k = LocateVex(*G, num1);
		G->arc[j][k] = 1;
	}
}

void PrintMGraph(MGraph G)
{
    
    
	printf("*************************\n");
	printf("邻接矩阵的遍历:\n");
	for (int i = 0; i < G.vexnum; i++) {
    
    
		for (int j = 0; j < G.vexnum; j++) {
    
    
			printf("%d  ", G.arc[i][j]);
			if (G.arc[i][j] != 0)
				out_deg[i]++;
			if (G.arc[j][i] != 0)
				in_deg[i]++;
		}
		printf("\n");
	}
	printf("*************************\n");
}

void Print_in_out_deg(MGraph G)
{
    
    
	printf("\n*************************\n");
	printf("各顶点的度的遍历:\n");
	for (int i = 0; i < G.vexnum; i++) {
    
    
		printf("\n第%d条边的入度: %d 与出度: %d\n", i + 1, in_deg[i], out_deg[i]);
	}
	printf("*************************\n");
}

void DFS(MGraph G, int v)
{
    
    
	visit[v] = 1;
	printf("%d  ", G.vertices[v]);
	for (int i = 0; i < G.vexnum; i++) {
    
    
		if (G.arc[v][i] != 0 && visit[i] == 0)
			DFS(G, i);
	}
}

void DFST(MGraph G)
{
    
    
	printf("DFS的遍历:");
	for (int i = 0; i < G.vexnum; i++) {
    
    
		if (!visit[i])
			DFS(G, i);
	}
}

int main()
{
    
    
	MGraph G;
	QUEUE Q;
	init_queue(&Q);
	CreatMGraph(&G);
	PrintMGraph(G);
	DFST(G);
	BFST(G, &Q);
	Print_in_out_deg(G);
	return 0;
}

猜你喜欢

转载自blog.csdn.net/qq_73899585/article/details/132116502