【图像分割】【深度学习】SAM官方Pytorch代码-Mask decoder模块MaskDeco网络解析

【图像分割】【深度学习】SAM官方Pytorch代码-Mask decoder模块MaskDeco网络解析

Segment Anything:建立了迄今为止最大的分割数据集,在1100万张图像上有超过1亿个掩码,模型的设计和训练是灵活的,其重要的特点是Zero-shot(零样本迁移性)转移到新的图像分布和任务,一个图像分割新的任务、模型和数据集。SAM由三个部分组成:一个强大的图像编码器(Image encoder)计算图像嵌入,一个提示编码器(Prompt encoder)嵌入提示,然后将两个信息源组合在一个轻量级掩码解码器(Mask decoder)中来预测分割掩码。本博客将讲解Mask decoder模块的深度学习网络代码。


前言

在详细解析SAM代码之前,首要任务是成功运行SAM代码【win10下参考教程】,后续学习才有意义。本博客讲解Mask decoder模块的深度网络代码,不涉及其他功能模块代码。


MaskDecoder网络简述

SAM模型关于MaskDeco网络的配置

博主以sam_vit_b为例,详细讲解MaskDeco网络的结构。
代码位置:segment_anything/build_sam.py

def build_sam_vit_b(checkpoint=None):
    return _build_sam(
        # 图像编码channel
        encoder_embed_dim=768,
        # 主体编码器的个数
        encoder_depth=12,
        # attention中head的个数
        encoder_num_heads=12,
        # 需要将相对位置嵌入添加到注意力图的编码器( Encoder Block)
        encoder_global_attn_indexes=[2, 5, 8, 11],
        # 权重
        checkpoint=checkpoint,
    )

sam模型中Mask_decoder模块初始化

mask_decoder=MaskDecoder(
    # 消除掩码歧义预测的掩码数
    num_multimask_outputs=3,
    # 用于预测mask的网咯transformer
    transformer=TwoWayTransformer(
        # 层数
        depth=2,
        # 输入channel
        embedding_dim=prompt_embed_dim,
        # MLP内部channel
        mlp_dim=2048,
        # attention的head数
        num_heads=8,
    ),
    # transformer的channel
    transformer_dim=prompt_embed_dim,
    # MLP的深度,MLP用于预测掩模质量的
    iou_head_depth=3,
    # MLP隐藏channel
    iou_head_hidden_dim=256,
),

MaskDeco网络结构与执行流程

Mask decoder源码位置:segment_anything/modeling/mask_decoder.py
MaskDeco网络(MaskDecoder类)结构参数配置。

def __init__(
    self,
    *,
    # transformer的channel
    transformer_dim: int,
    # 用于预测mask的网咯transformer
    transformer: nn.Module,
    # 消除掩码歧义预测的掩码数
    num_multimask_outputs: int = 3,
    # 激活层
    activation: Type[nn.Module] = nn.GELU,
    # MLP深度,MLP用于预测掩模质量的
    iou_head_depth: int = 3,
    # MLP隐藏channel
    iou_head_hidden_dim: int = 256,
) -> None:
    super().__init__()
    self.transformer_dim = transformer_dim              # transformer的channel
    #----- transformer -----
    self.transformer = transformer                      # 用于预测mask的网咯transformer
    # ----- transformer -----
    self.num_multimask_outputs = num_multimask_outputs  # 消除掩码歧义预测的掩码数
    self.iou_token = nn.Embedding(1, transformer_dim)   # iou的taken
    self.num_mask_tokens = num_multimask_outputs + 1    # mask数
    self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)      # mask的tokens数
    
    #----- upscaled -----
    # 4倍上采样
    self.output_upscaling = nn.Sequential(
        nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),     #转置卷积 上采样2倍
        LayerNorm2d(transformer_dim // 4),
        activation(),
        nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
        activation(),
    )
    # ----- upscaled -----

    # ----- MLP -----
    # 对应mask数的MLP
    self.output_hypernetworks_mlps = nn.ModuleList(
        [
            MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
            for i in range(self.num_mask_tokens)
        ]
    )
    # ----- MLP -----

    # ----- MLP -----
    # 对应iou的MLP
    self.iou_prediction_head = MLP(
        transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
    )
    # ----- MLP -----

SAM模型中MaskDeco网络结构如下图所示:

原论文中Mask decoder模块各部分结构示意图:

MaskDeco网络(MaskDecoder类)在特征提取中的几个基本步骤:

  1. transformer:融合特征(提示信息特征与图像特征)获得粗略掩膜src
  2. upscaled:对粗略掩膜src上采样
  3. mask_MLP:全连接层组(计算加权权重,使粗掩膜src转变为掩膜mask)
  4. iou_MLP:全连接层组(计算掩膜mask的Score)
def forward(
    self,
    # image encoder 图像特征
    image_embeddings: torch.Tensor,
    # 位置编码
    image_pe: torch.Tensor,
    # 标记点和标记框的嵌入编码
    sparse_prompt_embeddings: torch.Tensor,
    # 输入mask的嵌入编码
    dense_prompt_embeddings: torch.Tensor,
    # 是否输出多个mask
    multimask_output: bool,
) -> Tuple[torch.Tensor, torch.Tensor]:
    masks, iou_pred = self.predict_masks(
        image_embeddings=image_embeddings,
        image_pe=image_pe,
        sparse_prompt_embeddings=sparse_prompt_embeddings,
        dense_prompt_embeddings=dense_prompt_embeddings,
    )
    # Select the correct mask or masks for output
    if multimask_output:
        mask_slice = slice(1, None)
    else:
        mask_slice = slice(0, 1)
    masks = masks[:, mask_slice, :, :]
    iou_pred = iou_pred[:, mask_slice]
    return masks, iou_pred
def predict_masks(
    self,
    image_embeddings: torch.Tensor,
    image_pe: torch.Tensor,
    sparse_prompt_embeddings: torch.Tensor,
    dense_prompt_embeddings: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor]:
    # Concatenate output tokens
    # 1,E and 4,E --> 5,E
    output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
    # 5,E --> B,5,E
    output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
    # B,5,E and B,N,E -->B,5+N,E       N是点的个数(标记点和标记框的点)
    tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)

    # 扩展image_embeddings的B维度,因为boxes标记分割时,n个box时batchsize=batchsize*n
    # Expand per-image data in batch direction to be per-mask
    # B,C,H,W
    src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
    # B,C,H,W + 1,C,H,W ---> B,C,H,W
    src = src + dense_prompt_embeddings
    # 1,C,H,W---> B,C,H,W
    pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
    b, c, h, w = src.shape

    # ----- transformer -----
    # Run the transformer
    # B,N,C
    hs, src = self.transformer(src, pos_src, tokens)
    # ----- transformer -----

    iou_token_out = hs[:, 0, :]
    mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]

    # Upscale mask embeddings and predict masks using the mask tokens
    # B,N,C-->B,C,H,W
    
    src = src.transpose(1, 2).view(b, c, h, w)
    # ----- upscaled -----
    # 4倍上采样
    upscaled_embedding = self.output_upscaling(src)
    # ----- upscaled -----
    
    hyper_in_list: List[torch.Tensor] = []
    
    # ----- mlp -----
    for i in range(self.num_mask_tokens):
        # mask_tokens_out[:, i, :]: B,1,C
        # output_hypernetworks_mlps: B,1,c
        hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
    # B,n,c
    hyper_in = torch.stack(hyper_in_list, dim=1)
    # ----- mlp -----
    
    b, c, h, w = upscaled_embedding.shape
    # B,n,c × B,c,N-->B,n,h,w
    masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
    
    # ----- mlp -----
    # Generate mask quality predictions
    # iou_token_out: B,1,n
    iou_pred = self.iou_prediction_head(iou_token_out)
    # ----- mlp -----
    
    # masks: B,n,h,w
    # iou_pred: B,1,n
    return masks, iou_pred

MaskDeco网络基本步骤代码详解

transformer

MaskDeco由多个重复堆叠TwoWayAttention Block和1个Multi-Head Attention组成。

class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        # 层数
        depth: int,
        # 输入channel
        embedding_dim: int,
        # attention的head数
        num_heads: int,
        # MLP内部channel
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        super().__init__()
        self.depth = depth      # 层数
        self.embedding_dim = embedding_dim          # 输入channel
        self.num_heads = num_heads                  # attention的head数
        self.mlp_dim = mlp_dim                      # MLP内部隐藏channel
        self.layers = nn.ModuleList()
        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,    # 输入channel
                    num_heads=num_heads,            # attention的head数
                    mlp_dim=mlp_dim,                # MLP中间channel
                    activation=activation,          # 激活层
                    attention_downsample_rate=attention_downsample_rate,      # 下采样
                    skip_first_layer_pe=(i == 0),
                )
            )

        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,
        image_pe: Tensor,
        point_embedding: Tensor,
    ) -> Tuple[Tensor, Tensor]:
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape
        # 图像编码(image_encoder的输出)
        # BxHWxC=>B,N,C
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
        # 图像位置编码
        # BxHWxC=>B,N,C
        image_pe = image_pe.flatten(2).permute(0, 2, 1)

        # 标记点编码
        # B,N,C
        queries = point_embedding
        keys = image_embedding

        # -----TwoWayAttention-----
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )
        # -----TwoWayAttention-----

        q = queries + point_embedding
        k = keys + image_pe
        # -----Attention-----
        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
        # -----Attention-----
        queries = queries + attn_out
        queries = self.norm_final_attn(queries)
        return queries, keys

TwoWayAttention Block

TwoWayAttention Block由LayerNorm 、Multi-Head AttentionMLP构成。

class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,         # 输入channel
        num_heads: int,             # attention的head数
        mlp_dim: int = 2048,        # MLP中间channel
        activation: Type[nn.Module] = nn.ReLU,      # 激活层
        attention_downsample_rate: int = 2,         # 下采样
        skip_first_layer_pe: bool = False,
    ) -> None:
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)
        self.norm1 = nn.LayerNorm(embedding_dim)

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm2 = nn.LayerNorm(embedding_dim)

        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)

        self.norm4 = nn.LayerNorm(embedding_dim)
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.skip_first_layer_pe = skip_first_layer_pe
        
    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:

        # queries:标记点编码相关(原始标记点编码经过一系列特征提取)
        # keys:原始图像编码相关(原始图像编码经过一系列特征提取)
        # query_pe:原始标记点编码
        # key_pe:原始图像位置编码
        # 第一轮本身queries==query_pe没比较再"残差"
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
        queries = queries + attn_out
        queries = self.norm2(queries)

        # MLP block
        mlp_out = self.mlp(queries)
        queries = queries + mlp_out
        queries = self.norm3(queries)

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe
        k = keys + key_pe
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
        keys = keys + attn_out
        keys = self.norm4(keys)
        return queries, keys

TwoWayAttentionBlock的结构对比示意图:

原论文中TwoWayAttention部分示意图:

个人理解:TwoWayAttentionBlock是Prompt encoder的提示信息特征与Image encoder的图像特征的融合过程,而Prompt encoder对提示信息没有过多处理,因此博主认为TwoWayAttentionBlock的目的是边对提示信息特征做进一步处理边与图像特征融合。

Attention

MaskDeco的Attention与ViT的Attention有些细微的不同:MaskDeco的Attention是3个FC层分别接受3个输入获得q、k和v,而ViT的Attention是1个FC层接受1个输入后将结果均拆分获得q、k和v。

class Attention(nn.Module):

    def __init__(
        self,
        embedding_dim: int,         # 输入channel
        num_heads: int,             # attention的head数
        downsample_rate: int = 1,   # 下采样
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim
        self.internal_dim = embedding_dim // downsample_rate
        self.num_heads = num_heads
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
        # qkv获取
        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        q = self.q_proj(q)
        k = self.k_proj(k)
        v = self.v_proj(v)

        # Separate into heads
        # B,N_heads,N_tokens,C_per_head
        q = self._separate_heads(q, self.num_heads)
        k = self._separate_heads(k, self.num_heads)
        v = self._separate_heads(v, self.num_heads)

        # Attention
        _, _, _, c_per_head = q.shape
        attn = q @ k.permute(0, 1, 3, 2)  # B,N_heads,N_tokens,C_per_head
        # Scale
        attn = attn / math.sqrt(c_per_head)
        attn = torch.softmax(attn, dim=-1)
        # Get output
        out = attn @ v
        # # B,N_tokens,C
        out = self._recombine_heads(out)
        out = self.out_proj(out)
        return out

MaskDeco的Attention和ViT的Attention的结构对比示意图:

原论文中Attention部分示意图:

transformer_MLP

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))

transformer中MLP的结构对比示意图:

upscaled

# 在MaskDecoder的__init__定义
self.output_upscaling = nn.Sequential(
    nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),     #转置卷积 上采样2倍
    LayerNorm2d(transformer_dim // 4),
    activation(),
    nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
    activation(),
)
# 在MaskDecoder的predict_masks添加位置编码
upscaled_embedding = self.output_upscaling(src)

upscaled的结构对比示意图:

mask_MLP

此处的MLP基础模块不同于ViTMLP(transformer_MLP)基础模块。

# 在MaskDecoder的__init__定义
self.output_hypernetworks_mlps = nn.ModuleList(
    [
        MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
        for i in range(self.num_mask_tokens)
    ]
)
# 在MaskDecoder的predict_masks添加位置编码
 for i in range(self.num_mask_tokens):
     # mask_tokens_out[:, i, :]: B,1,C
     # output_hypernetworks_mlps: B,1,c
     hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
 # B,n,c
 hyper_in = torch.stack(hyper_in_list, dim=1)
 b, c, h, w = upscaled_embedding.shape
 # B,n,c × B,c,N-->B,n,h,w
 masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)

iou_MLP

此处的MLP基础模块不同于ViTMLP(transformer_MLP)基础模块。

# 在MaskDecoder的__init__定义
self.iou_prediction_head = MLP(
    transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
)
# 在MaskDecoder的predict_masks添加位置编码
iou_pred = self.iou_prediction_head(iou_token_out)

MaskDeco_MLP

class MLP(nn.Module):
    def __init__(
        self,
        input_dim: int,         # 输入channel
        hidden_dim: int,        # 中间channel
        output_dim: int,        # 输出channel
        num_layers: int,        # fc的层数
        sigmoid_output: bool = False,
    ) -> None:
        super().__init__()
        self.num_layers = num_layers
        h = [hidden_dim] * (num_layers - 1)
        self.layers = nn.ModuleList(
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

MaskDeco中MLP的结构对比示意图:

总结

尽可能简单、详细的介绍SAM中Mask decoder模块的MaskDeco网络的代码。

猜你喜欢

转载自blog.csdn.net/yangyu0515/article/details/130410948