Taylor公式和插值多项式

Taylor公式和插值多项式

笔记总结自:复旦大学-陈纪修-《数学分析》课程-第5章第3节-Taylor公式和插值多项式

一、Taylor公式

f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + R n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + . . . + 1 n ! f ( k ) ( x 0 ) ( x − x 0 ) n + R n ( x ) \begin{aligned} f(x) &= \sum\limits^{n}_{k=0}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k}+R_{n}(x) \\ &= f(x_{0})+f'(x_{0})(x-x_{0})+\frac{1}{2!}f''(x_{0})(x-x_{0})^{2}+...+\frac{1}{n!}f^{(k)}(x_{0})(x-x_{0})^{n}+R_{n}(x) \end{aligned} f(x)=k=0nk!f(k)(x0)(xx0)k+Rn(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2+...+n!1f(k)(x0)(xx0)n+Rn(x)


P n ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k P_{n}(x)=\sum\limits^{n}_{k=0}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k} Pn(x)=k=0nk!f(k)(x0)(xx0)k称为 f f f x = x 0 x=x_{0} x=x0处的n次Taylor多项式


带Peano余项的Taylor公式

定义:

f ( x ) f(x) f(x) x 0 x_{0} x0有n阶导数,则在 x 0 x_{0} x0的邻域成立 f ( x ) = P n ( x ) + R n ( x ) f(x)=P_{n}(x)+R_{n}(x) f(x)=Pn(x)+Rn(x)

R n ( x ) = o ( ( x − x 0 ) n ) R_{n}(x)=o((x-x_{0})^{n}) Rn(x)=o((xx0)n)称为 f f f x = x 0 x=x_{0} x=x0处的Peano余项


注意: f ( x ) 在 f(x)在 f(x) x 0 x_{0} x0处n阶可导,n-1阶连续,n阶不一定连续


证明:

即证 R n ( x ) = o ( ( x − x 0 ) n ) R_{n}(x)=o((x-x_{0})^{n}) Rn(x)=o((xx0)n)满足Taylor公式

R n ( x ) = f ( x ) − ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k R_{n}(x)=f(x)-\sum\limits^{n}_{k=0}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k} Rn(x)=f(x)k=0nk!f(k)(x0)(xx0)k

R n ′ ( x ) = f ′ ( x ) − ∑ k = 1 n f ( k ) ( x 0 ) ( k − 1 ) ! ( x − x 0 ) k − 1 R'_{n}(x)=f'(x)-\sum\limits^{n}_{k=1}\frac{f^{(k)}(x_{0})}{(k-1)!}(x-x_{0})^{k-1} Rn(x)=f(x)k=1n(k1)!f(k)(x0)(xx0)k1

R n ′ ′ ( x ) = f ′ ′ ( x ) − ∑ k = 2 n f ( k ) ( x 0 ) ( k − 2 ) ! ( x − x 0 ) k − 2 R''_{n}(x)=f''(x)-\sum\limits^{n}_{k=2}\frac{f^{(k)}(x_{0})}{(k-2)!}(x-x_{0})^{k-2} Rn(x)=f(x)k=2n(k2)!f(k)(x0)(xx0)k2

R n ( n − 1 ) ( x ) = f ( n − 1 ) ( x ) − ∑ k = n − 1 n f ( k ) ( x 0 ) ( k − ( n − 1 ) ) ! ( x − x 0 ) k − ( n − 1 ) R^{(n-1)}_{n}(x)=f^{(n-1)}(x)-\sum\limits^{n}_{k=n-1}\frac{f^{(k)}(x_{0})}{(k-(n-1))!}(x-x_{0})^{k-(n-1)} Rn(n1)(x)=f(n1)(x)k=n1n(k(n1))!f(k)(x0)(xx0)k(n1)

可得:

R n ( x 0 ) = f ( x 0 ) − f ( x 0 ) 0 ! ( x 0 − x 0 ) 0 = 0 R_{n}(x_{0})=f(x_{0})-\frac{f(x_{0})}{0!}(x_{0}-x_{0})^{0}=0 Rn(x0)=f(x0)0!f(x0)(x0x0)0=0

R n ′ ( x 0 ) = f ′ ( x 0 ) − f ′ ( x 0 ) 0 ! ( x 0 − x 0 ) 0 = 0 R'_{n}(x_{0})=f'(x_{0})-\frac{f'(x_{0})}{0!}(x_{0}-x_{0})^{0}=0 Rn(x0)=f(x0)0!f(x0)(x0x0)0=0

R n ′ ′ ( x 0 ) = f ′ ′ ( x 0 ) − f ′ ′ ( x 0 ) 0 ! ( x 0 − x 0 ) 0 = 0 R''_{n}(x_{0})=f''(x_{0})-\frac{f''(x_{0})}{0!}(x_{0}-x_{0})^{0}=0 Rn(x0)=f(x0)0!f(x0)(x0x0)0=0

R n ( n − 1 ) ( x 0 ) = f ′ ( x 0 ) − f ( n − 1 ) ( x 0 ) 0 ! ( x 0 − x 0 ) 0 = 0 R^{(n-1)}_{n}(x_{0})=f'(x_{0})-\frac{f^{(n-1)}(x_{0})}{0!}(x_{0}-x_{0})^{0}=0 Rn(n1)(x0)=f(x0)0!f(n1)(x0)(x0x0)0=0


又因为

R n ( n − 1 ) ( x ) = f ( n − 1 ) ( x ) − ∑ k = n − 1 n f ( k ) ( x 0 ) ( k − ( n − 1 ) ) ! ( x − x 0 ) k − ( n − 1 ) = f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) − f ( n ) ( x 0 ) ( x − x 0 ) \begin{aligned} R^{(n-1)}_{n}(x) &= f^{(n-1)}(x)-\sum\limits^{n}_{k=n-1}\frac{f^{(k)}(x_{0})}{(k-(n-1))!}(x-x_{0})^{k-(n-1)} \\ &= f^{(n-1)}(x)-f^{(n-1)}(x_{0})-f^{(n)}(x_{0})(x-x_{0}) \end{aligned} Rn(n1)(x)=f(n1)(x)k=n1n(k(n1))!f(k)(x0)(xx0)k(n1)=f(n1)(x)f(n1)(x0)f(n)(x0)(xx0)

所以

lim ⁡ x → x 0 R n ( x ) ( x − x 0 ) n = 0 0 lim ⁡ x → x 0 R n ′ ( x ) n ( x − x 0 ) n − 1 = 0 0 . . . = 0 0 lim ⁡ x → x 0 R n ( n − 1 ) ( x ) n ( n − 1 ) . . . 2 ( x − x 0 ) \lim\limits_{x\rarr x_{0}}\frac{R_{n}(x)}{(x-x_{0})^{n}} \overset{\frac{0}{0}}{=} \lim\limits_{x\rarr x_{0}}\frac{R'_{n}(x)}{n(x-x_{0})^{n-1}} \overset{\frac{0}{0}}{=} ... \overset{\frac{0}{0}}{=} \lim\limits_{x\rarr x_{0}}\frac{R^{(n-1)}_{n}(x)}{n(n-1)...2(x-x_{0})} xx0lim(xx0)nRn(x)=00xx0limn(xx0)n1Rn(x)=00...=00xx0limn(n1)...2(xx0)Rn(n1)(x)

= lim ⁡ x → x 0 1 n ! ⋅ [ f ( n − 1 ) ( x ) − f ( n − 1 ) ( x 0 ) x − x 0 − f ( n ) ( x 0 ) ] = 0 =\lim\limits_{x\rarr x_{0}}\frac{1}{n!}\cdot[\frac{f^{(n-1)}(x)-f^{(n-1)}(x_{0})}{x-x_{0}}-f^{(n)}(x_{0})]=0 =xx0limn!1[xx0f(n1)(x)f(n1)(x0)f(n)(x0)]=0


所以 R n ( x ) = o ( ( x − x 0 ) n ) R_{n}(x)=o((x-x_{0})^{n}) Rn(x)=o((xx0)n)


带Lagrange余项的Taylor公式

定义:

f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]有n阶连续导数,在 ( a , b ) (a,b) (a,b)有n+1阶导数。

x 0 ∈ [ a , , b ] x_{0}\in[a,,b] x0[a,,b]为一定点,则对任意 x ∈ [ a , , b ] x\in[a,,b] x[a,,b]

f ( x ) = P n ( x ) + R n ( x ) f(x)=P_{n}(x)+R_{n}(x) f(x)=Pn(x)+Rn(x)

R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1称为 f f f x = x 0 x=x_{0} x=x0处的Lagrange余项,其中 ξ \xi ξ x x x x 0 x_{0} x0之间


证明:

即证 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1满足Taylor公式

不妨设 x > x 0 x>x_{0} x>x0


G ( t ) = f ( x ) − ∑ k = 0 n f ( k ) ( t ) k ! ( x − t ) k G(t)=f(x)-\sum\limits^{n}_{k=0}\frac{f^{(k)}(t)}{k!}(x-t)^{k} G(t)=f(x)k=0nk!f(k)(t)(xt)k

G ( x ) = f ( x ) − ∑ k = 0 n f ( k ) ( x ) k ! ( x − x ) k = f ( x ) − f ( x ) = 0 G(x)=f(x)-\sum\limits^{n}_{k=0}\frac{f^{(k)}(x)}{k!}(x-x)^{k}=f(x)-f(x)=0 G(x)=f(x)k=0nk!f(k)(x)(xx)k=f(x)f(x)=0

     G ( x 0 ) = f ( x 0 ) − ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k = f ( x ) − f ( x ) = R n ( x ) G(x_{0})=f(x_{0})-\sum\limits^{n}_{k=0}\frac{f^{(k)}(x_{0})}{k!}(x-x_{0})^{k}=f(x)-f(x)=R_n(x) G(x0)=f(x0)k=0nk!f(k)(x0)(xx0)k=f(x)f(x)=Rn(x)

H ( t ) = ( x − t ) n + 1 H(t)=(x-t)^{n+1} H(t)=(xt)n+1

H ( x ) = 0 H(x)=0 H(x)=0

     H ( x 0 ) = ( x − x 0 ) n + 1 H(x_{0})=(x-x_{0})^{n+1} H(x0)=(xx0)n+1

G ( t ) , H ( t ) G(t),H(t) G(t),H(t) [ x 0 , x ] [x_{0},x] [x0,x]连续,在 ( x 0 , x ) (x_{0},x) (x0,x)可导


G ′ ( t ) = − ∑ k = 0 n 1 k ! [ f ( k ) ( t ) ( x − t ) k ] ′ = − ∑ k = 0 n f ( k + 1 ) ( t ) k ! ( x − t ) k + ∑ k = 1 n f ( k ) ( t ) ( k − 1 ) ! ( x − t ) k − 1 = − ∑ k = 1 n + 1 f ( k ) ( t ) ( k − 1 ) ! ( x − t ) k − 1 + ∑ k = 1 n f ( k ) ( t ) ( k − 1 ) ! ( x − t ) k − 1 = − f ( n + 1 ) ( t ) n ! ( x − t ) n \begin{aligned} G'(t) &= -\sum\limits^{n}_{k=0}\frac{1}{k!}[f^{(k)}(t)(x-t)^{k}]' \\ &= -\sum\limits^{n}_{k=0}\frac{f^{(k+1)}(t)}{k!}(x-t)^{k}+\sum\limits^{n}_{k=1}\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1} \\ &= -\sum\limits^{n+1}_{k=1}\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1}+\sum\limits^{n}_{k=1}\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1} \\ &= -\frac{f^{(n+1)}(t)}{n!}(x-t)^{n} \end{aligned} G(t)=k=0nk!1[f(k)(t)(xt)k]=k=0nk!f(k+1)(t)(xt)k+k=1n(k1)!f(k)(t)(xt)k1=k=1n+1(k1)!f(k)(t)(xt)k1+k=1n(k1)!f(k)(t)(xt)k1=n!f(n+1)(t)(xt)n

H ′ ( t ) = − ( n + 1 ) ( x − t ) n H'(t)=-(n+1)(x-t)^{n} H(t)=(n+1)(xt)n

R n ( x ) ( x − x 0 ) n + 1 = G ( x 0 ) H ( x 0 ) = G ( x 0 ) − G ( x ) H ( x 0 ) − H ( x ) = G ′ ( ξ ) H ′ ( ξ ) = f n + 1 ( ξ ) ( n + 1 ) ! ( x 0 < ξ < x ) \begin{aligned} \frac{R_{n}(x)}{(x-x_{0})^{n+1}} &= \frac{G(x_{0})}{H(x_{0})} \\ &= \frac{G(x_{0})-G(x)}{H(x_{0})-H(x)} \\ &= \frac{G'(\xi)}{H'(\xi)} \\ &= \frac{f^{n+1}(\xi)}{(n+1)!} & (x_{0}<\xi<x)\end{aligned} (xx0)n+1Rn(x)=H(x0)G(x0)=H(x0)H(x)G(x0)G(x)=H(ξ)G(ξ)=(n+1)!fn+1(ξ)(x0<ξ<x)


所以 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_{0})^{n+1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1,其中 ξ \xi ξ x x x x 0 x_{0} x0之间



二、插值多项式

已知:确定多项式 p n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n p_{n}=a_{0}+a_{1}x+a_{2}x^{2}+...+a_{n}x^{n} pn=a0+a1x+a2x2+...+anxn至少需要n+1个条件

目标:对于 [ a , b ] [a,b] [a,b]上的函数 f ( x ) f(x) f(x),找到n+1个条件来确定 f ( x ) f(x) f(x)的插值多项式 p n ( x ) p_{n}(x) pn(x)


插值多项式的定义

已知 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内的m+1个互异点 x 0 , x 1 , . . . x m x_{0},x_{1},...x_{m} x0,x1,...xm上的函数值和若干阶导数 f ( j ) ( x ) f^{(j)}(x) f(j)(x),其中 i = 0 , 1 , 2 , . . . , m i=0,1,2,...,m i=0,1,2,...,m j = 0 , 1 , . . . , m a x ( n i ) − 1 j=0,1,...,max(n_{i})-1 j=0,1,...,max(ni)1

n i n_{i} ni表示 f ( x ) f(x) f(x)在点 x i x_{i} xi处已知的导数值的个数, m j m_{j} mj表示已知 j j j阶导数值的点的个数, ∑ j = 0 n + 1 m j = ∑ i = 0 m n i = n + 1 \sum\limits_{j=0}^{n+1}m_{j}=\sum\limits_{i=0}^{m}n_{i}=n+1 j=0n+1mj=i=0mni=n+1

若存在一个n次多项式 P n ( x ) P_{n}(x) Pn(x)满足所有插值条件 p n ( j ) ( x i ) = f ( j ) ( x i ) p^{(j)}_{n}(x_{i})=f^{(j)}(x_{i}) pn(j)(xi)=f(j)(xi),则称 p n ( x ) p_{n}(x) pn(x) f ( x ) f(x) f(x)关于插值结点 x 0 , x 1 , . . . , x m x_{0},x_{1},...,x_{m} x0,x1,...,xm的n次插值多项式


例如:

x 0 x_{0} x0 x 1 x_{1} x1 x 2 x_{2} x2 x 3 x_{3} x3 m j m_{j} mj
j = 0 j=0 j=0 f ( x 0 ) f(x_{0}) f(x0) f ( x 1 ) f(x_{1}) f(x1) f ( x 2 ) f(x_{2}) f(x2) f ( x 3 ) f(x_{3}) f(x3) m 0 = 4 m_{0}=4 m0=4
j = 1 j=1 j=1 f ′ ( x 0 ) f'(x_{0}) f(x0) f ′ ( x 2 ) f'(x_{2}) f(x2) f ′ ( x 3 ) f'(x_{3}) f(x3) m 1 = 3 m_{1}=3 m1=3
j = 2 j=2 j=2 f ′ ′ ( x 0 ) f''(x_{0}) f(x0) f ′ ′ ( x 2 ) f''(x_{2}) f(x2) f ′ ′ ( x 3 ) f''(x_{3}) f(x3) m 2 = 3 m_{2}=3 m2=3
j = 3 j=3 j=3 f ′ ′ ′ ( x 2 ) f'''(x_{2}) f(x2) m 3 = 1 m_{3}=1 m3=1
n i n_{i} ni n 0 = 3 n_{0}=3 n0=3 n 1 = 1 n_{1}=1 n1=1 n 2 = 4 n_{2}=4 n2=4 n 3 = 3 n_{3}=3 n3=3 n + 1 = 11 n+1=11 n+1=11

插值多项式余项定理

定义:

f ( n ) ( x ) f^{(n)}(x) f(n)(x) [ a , b ] [a,b] [a,b]连续, f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) ( a , b ) (a,b) (a,b)存在,其插值多项式为 p n ( x ) p_{n}(x) pn(x)。那么对任意 x ∈ ( a , b ) x\in(a,b) x(a,b),插值余项:

R n ( x ) = f ( x ) − p n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 m ( x − x i ) n i R_{n}(x)=f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\prod\limits^{m}_{i=0}(x-x_{i})^{n_{i}} Rn(x)=f(x)pn(x)=(n+1)!f(n+1)(ξ)i=0m(xxi)ni

这里 ξ \xi ξ是介于 x m i n = m i n ( x 0 , x 1 , . . . , x m , x ) x_{min}=min(x_{0},x_{1},...,x_{m},x) xmin=min(x0,x1,...,xm,x) x m a x = m a x ( x 0 , x 1 , . . . , x m , x ) x_{max}=max(x_{0},x_{1},...,x_{m},x) xmax=max(x0,x1,...,xm,x)之间的一个数(一般依赖于 x x x


证明:

x ≠ x i x\neq x_{i} x=xi

令n+1次多项式 w n + 1 ( t ) = ∏ i = 0 m ( t − x i ) n i w_{n+1}(t)=\prod\limits^{m}_{i=0}(t-x_{i})^{n_{i}} wn+1(t)=i=0m(txi)ni

w n + 1 ( j ) ( x i ) = 0 , ( i = 0 , 1 , 2 , . . . , m j = 0 , 1 , . . . , m a x ( n i ) − 1 ) w^{(j)}_{n+1}(x_{i})=0, \left(\begin{array}{l} i=0,1,2,...,m \\ j=0,1,...,max(n_{i})-1\end{array}\right) wn+1(j)(xi)=0,(i=0,1,2,...,mj=0,1,...,max(ni)1)

φ ( t ) = f ( t ) − p n ( t ) − w n + 1 ( t ) w n + 1 ( x ) ( f ( x ) − p n ( x ) ) \varphi(t)=f(t)-p_{n}(t)-\frac{w_{n+1}(t)}{w_{n+1}(x)}(f(x)-p_{n}(x)) φ(t)=f(t)pn(t)wn+1(x)wn+1(t)(f(x)pn(x))

因为 f ( j ) ( x i ) = p n ( j ) ( x i ) f^{(j)}(x_{i})=p_{n}^{(j)}(x_{i}) f(j)(xi)=pn(j)(xi) w n + 1 ( j ) ( x i ) = 0 w^{(j)}_{n+1}(x_{i})=0 wn+1(j)(xi)=0

所以 φ ( j ) ( x i ) = f ( j ) ( x i ) − p n ( j ) ( x i ) − w n + 1 ( j ) ( x i ) w n + 1 ( x ) ( f ( x ) − p n ( x ) ) = 0 , ( i = 0 , 1 , 2 , . . . , m j = 0 , 1 , . . . , m a x ( n i ) − 1 ) \varphi^{(j)}(x_{i})=f^{(j)}(x_{i})-p_{n}^{(j)}(x_{i})-\frac{w_{n+1}^{(j)}(x_{i})}{w_{n+1}(x)}(f(x)-p_{n}(x))=0, \left(\begin{array}{l}i=0,1,2,...,m \\ j=0,1,...,max(n_{i})-1\end{array}\right) φ(j)(xi)=f(j)(xi)pn(j)(xi)wn+1(x)wn+1(j)(xi)(f(x)pn(x))=0,(i=0,1,2,...,mj=0,1,...,max(ni)1)


令上式中 j = 0 j=0 j=0,可得 φ ( x i ) = 0 \varphi(x_{i})=0 φ(xi)=0

又因为 φ ( x ) = f ( x ) − p n ( x ) − w n + 1 ( x ) w n + 1 ( x ) ( f ( x ) − p n ( x ) ) = 0 \varphi(x)=f(x)-p_{n}(x)-\frac{w_{n+1}(x)}{w_{n+1}(x)}(f(x)-p_{n}(x))=0 φ(x)=f(x)pn(x)wn+1(x)wn+1(x)(f(x)pn(x))=0

所以 φ ( t ) \varphi(t) φ(t)的零点: { x 0 , x 1 , . . . , x m , x } \{x_{0},x_{1},...,x_{m},x\} { x0,x1,...,xm,x},共 m 0 + 1 m_{0}+1 m0+1

由Rolle定理:

φ ′ ( t ) \varphi'(t) φ(t)的零点有 m 0 + m 1 m_{0}+m_{1} m0+m1

φ ′ ′ ( t ) \varphi''(t) φ(t)的零点有 m 0 + m 1 + m 2 − 1 m_{0}+m_{1}+m_{2}-1 m0+m1+m21

φ ′ ( t ) \varphi'(t) φ(t)的零点有 m 0 + m 1 + . . . + m n + 1 − n = 1 m_{0}+m_{1}+...+m_{n+1}-n=1 m0+m1+...+mn+1n=1个,设该零点为 ξ \xi ξ

ξ ∈ ( x m i n , x m a x ) , φ ( n + 1 ) ( ξ ) = 0 \xi\in(x_{min},x_{max}),\varphi^{(n+1)}(\xi)=0 ξ(xmin,xmax),φ(n+1)(ξ)=0


因为 p n ( x ) p_{n}(x) pn(x)是n次多项式,所以其n+1阶导数为0

w n + 1 ( t ) = ∏ i = 0 m ( t − x i ) n i w_{n+1}(t)=\prod\limits^{m}_{i=0}(t-x_{i})^{n_{i}} wn+1(t)=i=0m(txi)ni是n+1次多项式,对它求n+1阶导数相当于对它的最高次项 t n + 1 t^{n+1} tn+1求n+1阶导数,得到 w n + 1 ( n + 1 ) ( t ) = ( n + 1 ) ! w_{n+1}^{(n+1)}(t)=(n+1)! wn+1(n+1)(t)=(n+1)!

因此:

φ ( n + 1 ) ( ξ ) = f ( n + 1 ) ( x ) − ( n + 1 ) ! w n + 1 ( x ) ( f ( x ) − p n ( x ) ) = 0 \varphi^{(n+1)}(\xi)=f^{(n+1)}(x)-\frac{(n+1)!}{w_{n+1}(x)}(f(x)-p_{n}(x))=0 φ(n+1)(ξ)=f(n+1)(x)wn+1(x)(n+1)!(f(x)pn(x))=0

⇒ R n ( x ) = f ( x ) − p n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ∏ i = 0 m ( x − x i ) n i \Rarr R_{n}(x)=f(x)-p_{n}(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}\prod\limits^{m}_{i=0}(x-x_{i})^{n_{i}} Rn(x)=f(x)pn(x)=(n+1)!f(n+1)(ξ)i=0m(xxi)ni

猜你喜欢

转载自blog.csdn.net/Qmj2333333/article/details/114883922
今日推荐