MobileNet系列

MobileNet V1

V1采用了depthwise separable convolution,即由depthwise卷积和pointwise卷积两步组成

深度可分离卷积基本单元如下图所示,图中的应为ReLU6

ReLU6=min(max(0,x), 6),见下图

通过深度可分离卷积,计算量将会下降,当卷积核尺寸等于3时,深度可分离卷积比传统卷积少8到9倍的计算量。 

最后给出v1的整个模型结构,该网络有28层。可以看出,该网络基本去除了pool层,使用stride来进行降采样(难道是因为pool层的速度慢?)。

 v1还给出了2个超参,宽度乘子α和分辨率乘子β,通过这两个超参,可以进一步缩减模型

MobileNet V2

V2在V1的基础上,引入了Inverted Residuals和Linear Bottlenecks。

motivation:如下图所示,作者认为对低维度做ReLU运算,很容易造成信息的丢失。而在高维度进行ReLU运算的话,信息的丢失则会很少。另外一种解释是,高维信息变换回低维信息时,相当于做了一次特征压缩,会损失一部分信息,而再进过relu后,损失的部分就更加大了。作者为了这个问题,就将ReLU替换成线性激活函数。

Inverted Residuals“倒残差模块”。

  • 残差模块:输入首先经过1*1的卷积进行压缩,然后使用3*3的卷积进行特征提取,最后在用1*1的卷积把通道数变换回去。整个过程是“压缩-卷积-扩张”。这样做的目的是减少3*3模块的计算量,提高残差模块的计算效率。
  • 倒残差模块:输入首先经过1*1的卷积进行通道扩张,然后使用3*3的depthwise卷积,最后使用1*1的pointwise卷积将通道数压缩回去。整个过程是“扩张-卷积-压缩”。为什么这么做呢?因为depthwise卷积不能改变通道数,因此特征提取受限于输入的通道数,所以将通道数先提升上去。文中的扩展因子为6

Linear Bottleneck

这个模块是为了解决一开始提出的那个低维-高维-低维的问题,即将最后一层的ReLU替换成线性激活函数,而其他层的激活函数依然是ReLU6。

         将两个模块进行结合,如下图所示。当stride=1时,输入首先经过1*1的卷积进行通道数的扩张,此时激活函数为ReLU6;然后经过3*3的depthwise卷积,激活函数是ReLU6;接着经过1*1的pointwise卷积,将通道数压缩回去,激活函数是linear;最后使用shortcut,将两者进行相加。而当stride=2时,由于input和output的特征图的尺寸不一致,所以就没有shortcut了。 

 最后,给出v2的网络结构。其中,t为扩张系数,c为输出通道数,n为该层重复的次数,s为步长。可以看出,v2的网络比v1网络深了很多,v2有54层。

v2的准确率比v1高出不少,延时也低了很多,是一款不错的轻量化网络,模型对比见下表

MobileNet V3 

V3发表于2019年,该v3版本结合了v1的深度可分离卷积、v2的Inverted Residuals和Linear Bottleneck、以及V3中新加的SE模块,利用NAS(神经结构搜索)来搜索网络的配置和参数。

v3在v2的版本上有以下的改进:

  • 作者发现,计算资源耗费最多的层是网络的输入和输出层,因此作者对这两部分进行了改进。如下图所示,上面是v2的最后输出几层,下面是v3的最后输出的几层。可以看出,v3版本将平均池化层提前了。在使用1×11×1卷积进行扩张后,就紧接池化层-激活函数,最后使用1×11×1的卷积进行输出。通过这一改变,能减少10ms的延迟,提高了15%的运算速度,且几乎没有任何精度损失。其次,对于v2的输入层,通过3×33×3卷积将输入扩张成32维。作者发现使用ReLU或者switch激活函数,能将通道数缩减到16维,且准确率保持不变。这又能节省3ms的延时。

  • 由于嵌入式设备计算sigmoid是会耗费相当大的计算资源的,因此作者提出了h-switch作为激活函数。且随着网络的加深,非线性激活函数的成本也会随之减少。所以,只有在较深的层使用h-switch才能获得更大的优势。

  • 在v2的block上引入SE模块,SE模块是一种轻量级的通道注意力模块。在depthwise之后,经过池化层,然后第一个fc层,通道数缩小4倍,再经过第二个fc层,通道数变换回去(扩大4倍),然后与depthwise进行按位相乘。

最后,v3的结构如下图所示。作者提供了两个版本的v3,分别是large和small,对应于高资源和低资源的情况。两者都是使用NAS进行搜索出来的。

从下面的试验结果,可以看出v3-large的准确率和计算速度都高于v2。所以,AutoML搭出来的网络,已经能代替大部分调参了。

参考:

MobileNet系列 

PyTorch实现深度可分离卷积(以MobileNet为例)

猜你喜欢

转载自blog.csdn.net/yzy__zju/article/details/107745624