SS-CA-APPLE:什么是复数项级数?如何判断级数收敛?

数学原理
目 录
Contents
复数列的极限
级数
应用举例
判断数列是否收敛
判断级数是否收敛
信号与系统
离散信号
傅里叶级数分解
作业练习
判断数列是否收敛
判断级数收敛

§01 学原理


1.1 复数列的极限

1.1.1 复数列极限定义

{ α n } ( n = 1 , 2 , ⋯ ) \left\{ {\alpha _n } \right\}\left( {n = 1,2, \cdots } \right) { αn}(n=1,2,) 为复数列,其中 α n = a n + i b n \alpha _n = a_n + ib_n αn=an+ibn α = a + i b \alpha = a + ib α=a+ib 为一确定的复数。对于任意给定 ε > 0 \varepsilon > 0 ε>0 ,相应可以确定 N ( ε ) N\left( \varepsilon \right) N(ε) ,当 n > N n > N n>N 时, ∣ α n − α ∣ < ε \left| {\alpha _n - \alpha } \right| < \varepsilon αnα<ε 那么 α \alpha α 称为复数列 { α n } \left\{ {\alpha _n } \right\} { αn} n → ∞ n \to \infty n 时的极限,记做 lim ⁡ n → ∞ α n = α \mathop {\lim }\limits_{n \to \infty } \alpha _n = \alpha nlimαn=α 也称复数列 { α n } \left\{ {\alpha _n } \right\} { αn} 收敛于 α \alpha α

1.1.2 复数列收敛充要条件

  复数列 { α n } \left\{ {\alpha _n } \right\} { αn} n = 1 , 2 , ⋯ n = 1,2, \cdots n=1,2, )收敛于 α \alpha α 的充要条件是 lim ⁡ n → ∞ a n = a ,    lim ⁡ n → ∞ b n = b \mathop {\lim }\limits_{n \to \infty } a_n = a,\,\,\mathop {\lim }\limits_{n \to \infty } b_n = b nliman=a,nlimbn=b

  证明: 【略】

1.2 级数

1.2.1 级数与部分和

  设 { α n } = { a n + i b n } ( n = 1 , 2 , ⋯ ) \left\{ {\alpha _n } \right\} = \left\{ {a_n + ib_n } \right\}\left( {n = 1,2, \cdots } \right) { αn}={ an+ibn}(n=1,2,) 为复数列,称下面累加和 ∑ n = 1 + ∞ α n = α 1 + α 2 + ⋯ + α n + ⋯ \sum\limits_{n = 1}^{ + \infty } {\alpha _n } = \alpha _1 + \alpha _2 + \cdots + \alpha _n + \cdots n=1+αn=α1+α2++αn+ 为无穷级数。其前 n n n 项的和 s n = ∑ k = 1 n α k = α 1 + α 2 + ⋯ + α n s_n = \sum\limits_{k = 1}^n {\alpha _k } = \alpha _1 + \alpha _2 + \cdots + \alpha _n sn=k=1nαk=α1+α2++αn 称为级数的部分和。

1.2.2 级数收敛与发散

  部分和构成数列 { s n } \left\{ {s_n } \right\} { sn} ,如果收敛,那么称级数 ∑ n = 1 ∞ α n \sum\limits_{n = 1}^\infty {\alpha _n } n=1αn 称为收敛,并定义 ∑ n = 1 ∞ α n = lim ⁡ n → ∞ s n \sum\limits_{n = 1}^\infty {\alpha _n } = \mathop {\lim }\limits_{n \to \infty } s_n n=1αn=nlimsn 如果 { s n } \left\{ {s_n } \right\} { sn} 不收敛,则 ∑ n = 1 ∞ α n \sum\limits_{n = 1}^\infty {\alpha _n } n=1αn 称为发散

1.2.3 级数收敛充要条件

(1)收敛的充要条件

  级数 ∑ n = 1 ∞ α n \sum\limits_{n = 1}^\infty {\alpha _n } n=1αn 收敛的充要条件是级数 ∑ n = 1 ∞ a n \sum\limits_{n = 1}^\infty {a_n } n=1an ∑ n = 1 ∞ b n \sum\limits_{n = 1}^\infty {b_n } n=1bn 都收敛。

(2)收敛的必要条件

  复数级数的收敛充要条件转换成了实部和虚部两个实数级数收敛的条件。它们收敛的必要条件是组成级数数项收敛到0。

(3)收敛的充分条件

如果 ∑ n = 1 ∞ ∣ α n ∣ \sum\limits_{n = 1}^\infty {\left| {\alpha _n } \right|} n=1αn 收敛,那么 ∑ n = 1 ∞ α n \sum\limits_{n = 1}^\infty {\alpha _n } n=1αn 也收敛,且 ∣ ∑ n = 1 ∞ α n ∣ ≤ ∑ n = 1 ∞ ∣ α n ∣ \left| {\sum\limits_{n = 1}^\infty {\alpha _n } } \right| \le \sum\limits_{n = 1}^\infty {\left| {\alpha _n } \right|} n=1αnn=1αn 。此时 ∑ n = 1 ∞ α n \sum\limits_{n = 1}^\infty {\alpha _n } n=1αn绝对收敛

注:绝对值级数收敛是级数收敛的充分条件,非绝对收敛的收敛级数称为条件收敛级

§02 用举例


2.1 判断数列是否收敛

  下列数列是否收敛?如果收敛,求出其极限。

( 1 )      α n = ( 1 + 1 n ) e i π n ;             ( 2 )      α n = n cos ⁡ i n \left( 1 \right)\,\,\,\,\alpha _n = \left( {1 + {1 \over n}} \right)e^{i{\pi \over n}} ;\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,\alpha _n = n\cos in (1)αn=(1+n1)einπ;(2)αn=ncosin

  求解:
  (1) 因为 α n = ( 1 + 1 n ) e i π n = ( 1 + 1 n ) ( cos ⁡ π n + i sin ⁡ π n ) \alpha _n = \left( {1 + {1 \over n}} \right)e^{i{\pi \over n}} = \left( {1 + {1 \over n}} \right)\left( {\cos {\pi \over n} + i\sin {\pi \over n}} \right) αn=(1+n1)einπ=(1+n1)(cosnπ+isinnπ) 所以 a n = ( 1 + 1 n ) cos ⁡ π n ,    b n = ( 1 + 1 n ) sin ⁡ π n a_n = \left( {1 + {1 \over n}} \right)\cos {\pi \over n},\,\,b_n = \left( {1 + {1 \over n}} \right)\sin {\pi \over n} an=(1+n1)cosnπ,bn=(1+n1)sinnπ 因而 lim ⁡ n → ∞ a n = 1 ,    lim ⁡ n → ∞ b n = 0 \mathop {\lim }\limits_{n \to \infty } a_n = 1,\,\,\mathop {\lim }\limits_{n \to \infty } b_n = 0 nliman=1,nlimbn=0 所以数列 α n = ( 1 + 1 n ) e i π n \alpha _n = \left( {1 + {1 \over n}} \right)e^{i{\pi \over n}} αn=(1+n1)einπ 收敛,而且 lim ⁡ n → ∞ α n = 1 \mathop {\lim }\limits_{n \to \infty } \alpha _n = 1 nlimαn=1

▲ 图2.1.1 复平面上数列分布

▲ 图2.1.1 复平面上数列分布

from headm import *

n=arange(1,100)

p = (1+1/n)*exp(1j*pi/n)

plt.scatter(real(p), imag(p))
for i in range(10):
    plt.text(real(p[i])+0.05, imag(p[i]), 'n=%d'%i, fontsize=12, color='r')

plt.xlabel("Real")
plt.ylabel("Image")
plt.grid(True)
plt.tight_layout()
plt.show()

  (2) 由于 α n = n cos ⁡ i n = n c h ( n ) \alpha _n = n\cos in = nch\left( n \right) αn=ncosin=nch(n) ,因此当 n → ∞ n \to \infty n α n → ∞ \alpha _n \to \infty αn ,所以 α n \alpha _n αn 发散。

2.2 判断级数是否收敛

  下列级数是是否收敛?是否绝对收敛?
( 1 )      ∑ n = 1 ∞ 1 n ( 1 + i n ) ;        ( 2 )     ∑ n = 1 ∞ ( 8 i ) n n ! ;          ( 3 )     ∑ n = 1 ∞ [ ( − 1 ) n n + 1 2 n i ] \left( 1 \right)\,\,\,\,\sum\limits_{n = 1}^\infty { {1 \over n}\left( {1 + {i \over n}} \right)} ;\,\,\,\,\,\,\left( 2 \right)\,\,\,\sum\limits_{n = 1}^\infty { { {\left( {8i} \right)^n } \over {n!}}} ;\,\,\,\,\,\,\,\,\left( 3 \right)\,\,\,\sum\limits_{n = 1}^\infty {\left[ { { {\left( { - 1} \right)^n } \over n} + {1 \over {2^n }}i} \right]} (1)n=1n1(1+ni);(2)n=1n!(8i)n;(3)n=1[n(1)n+2n1i]

  求解:
  (1) 因为级数实部 ∑ n = 1 ∞ a n = ∑ n = 1 ∞ 1 n \sum\limits_{n = 1}^\infty {a_n } = \sum\limits_{n = 1}^\infty { {1 \over n}} n=1an=n=1n1 发散;虚部 ∑ n = 1 ∞ b n = ∑ n = 1 ∞ 1 n 2 \sum\limits_{n = 1}^\infty {b_n } = \sum\limits_{n = 1}^\infty { {1 \over {n^2 }}} n=1bn=n=1n21 收敛,所以原级数发散。

  (2) 因为 ∣ ( 8 i ) n n ! ∣ = 8 n n ! \left| { { {\left( {8i} \right)^n } \over {n!}}} \right| = { {8^n } \over {n!}} n!(8i)n=n!8n ,由正项级数比值审敛法知道 ∑ n = 1 ∞ 8 n n ! \sum\limits_{n = 1}^\infty { { {8^n } \over {n!}}} n=1n!8n 收敛,所以原级数收敛,且为绝对收敛。

  (3) 因为 ∑ n = 1 ∞ ( − 1 ) n n \sum\limits_{n = 1}^\infty { { {\left( { - 1} \right)^n } \over n}} n=1n(1)n 收敛; ∑ n = 1 ∞ 1 2 n \sum\limits_{n = 1}^\infty { {1 \over {2^n }}} n=12n1 也收敛,所以猿击术收敛。但 ∑ n = 1 ∞ ( − 1 ) n n \sum\limits_{n = 1}^\infty { { {\left( { - 1} \right)^n } \over n}} n=1n(1)n 为条件收敛,所以原级数不是绝对收敛。

§03 号与系统


3.1 离散信号

  在信号与系统中,离散信号是指自变量只取离散数字的信号。它包括离散时间序列,周期信号的离散频谱等等。通常情况下,离散时间序列为实数数列,离散频谱为复数数列。

▲ 图3.1.1 离散时间序列

▲ 图3.1.1 离散时间序列

▲ 图3.1.2 离散信号频谱

▲ 图3.1.2 离散信号频谱

  判断数列是否收敛,在讨论离散时间系统单位冲激响应、单位阶跃响应时帮助判断系统的稳定性。

3.2 傅里叶级数分解

  周期连续信号可以表示成其谐波级数的叠加,傅里叶级数分解可以计算出谐波的幅度和相位。下面是傅里叶级数分解公式 F n = 1 T 1 ∫ − T 1 2 T 1 2 f ( t ) e − j n ω 1 t d t F_n = {1 \over {T_1 }}\int_{ - { {T_1 } \over 2}}^{ { {T_1 } \over 2}} {f\left( t \right)e^{ - jn\omega _1 t} dt} Fn=T112T12T1f(t)ejnω1tdt 那么否其信号可以由无穷级数合成 f ( t ) = ∑ n = − ∞ + ∞ F n e j n ω 1 t f\left( t \right) = \sum\limits_{n = - \infty }^{ + \infty } {F_n e^{jn\omega _1 t} } f(t)=n=+Fnejnω1t

  对于能量有限的信号,傅里叶级数都会收敛,而且每一项的绝对值都会收敛到0。

§04 业练习


4.1 判断数列是否收敛

  判断下面数列是否收敛?
( 1 )     α n = 1 + n i 1 − n i ;                         ( 2 )     α n = ( 1 + i 2 ) − n \left( 1 \right)\,\,\,\alpha _n = { {1 + ni} \over {1 - ni}};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\alpha _n = \left( {1 + {i \over 2}} \right)^{ - n} (1)αn=1ni1+ni;(2)αn=(1+2i)n ( 3 )     α n = ( − 1 ) n + i n + 1 ;          ( 4 )     α n = e − n π i / 2 \left( 3 \right)\,\,\,\alpha _n = \left( { - 1} \right)^n + {i \over {n + 1}};\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\alpha _n = e^{ - n\pi i/2} (3)αn=(1)n+n+1i;(4)αn=enπi/2 ( 5 )      α n = 1 n e − n π i / 2 \left( 5 \right)\,\,\,\,\alpha _n = {1 \over n}e^{ - n\pi i/2} (5)αn=n1enπi/2

4.2 判断级数收敛

  判别下列级数的绝对收敛性与收敛性:

( 1 )      ∑ n = 1 ∞ i n n ;                              ( 2 )      ∑ n = 2 ∞ i n ln ⁡ n ; \left( 1 \right)\,\,\,\,\sum\limits_{n = 1}^\infty { { {i^n } \over n}} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,\,\sum\limits_{n = 2}^\infty { { {i^n } \over {\ln n}}} ; (1)n=1nin;(2)n=2lnnin; ( 3 )      ∑ n = 0 ∞ ( 6 + 5 i ) n 8 n ;               ( 4 )      ∑ n = 0 ∞ cos ⁡ i n 2 n \left( 3 \right)\,\,\,\,\sum\limits_{n = 0}^\infty { { {\left( {6 + 5i} \right)^n } \over {8^n }}} ;\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\,\sum\limits_{n = 0}^\infty { { {\cos in} \over {2^n }}} (3)n=08n(6+5i)n;(4)n=02ncosin


● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124210813