SS-CA-APPLE:什么是洛朗级数?

数学原理
目 录
Contents
洛朗级数
应用举例
将函数展开
成洛朗级数
利用洛朗级数
求围线积分
信号与系统
作业练习
展开成洛朗级数
利用洛朗级数
求围线积分

§01 学原理


1.1 洛朗级数

f ( z ) f\left( z \right) f(z) 在圆环域 R 1 < ∣ z − z 0 ∣ < R 2 R_1 < \left| {z - z_0 } \right| < R_2 R1<zz0<R2 内处处解析,那么 f ( z ) = ∑ n = − ∞ + ∞ c n ( z − z 0 ) n f\left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {c_n \left( {z - z_0 } \right)^n } f(z)=n=+cn(zz0)n 其中 c n = 1 2 π i ∮ C f ( ζ ) ( ζ − z 0 ) n + 1 d ζ ,     ( n = 0 , ± 1 , ± 2 , ⋯ ) c_n = {1 \over {2\pi i}}\oint_C { { {f\left( \zeta \right)} \over {\left( {\zeta - z_0 } \right)^{n + 1} }}d\zeta } ,\,\,\,\left( {n = 0, \pm 1, \pm 2, \cdots } \right) cn=2πi1C(ζz0)n+1f(ζ)dζ,(n=0,±1,±2,)

▲ 图1.1 洛朗级数展开

▲ 图1.1 洛朗级数展开

这个公式称为函数 f ( z ) f\left( z \right) f(z) 在以 z 0 z_0 z0 为中心的圆环域: R 1 < ∣ z − z 0 ∣ < R 2 R_1 < \left| {z - z_0 } \right| < R_2 R1<zz0<R2 内的洛朗(Laurent)展开式,称 f ( z ) f\left( z \right) f(z) 在此圆环内的洛朗级数。

  • 解析部分:洛朗级数中的正整次幂级数部分;
  • 主要部分:洛朗级数中的负整次幂级数部分;

  这种展开形式具有唯一性。

1.1.1 利用洛朗级数求积分

  根据洛朗级数系数 c n c_n cn 计算公式,令 n = − 1 n = - 1 n=1 时,则有 c − 1 = 1 2 π i ∮ C f ( z ) d z c_{ - 1} = {1 \over {2\pi i}}\oint_C {f\left( z \right)dz} c1=2πi1Cf(z)dz 所以 ∮ C f ( z ) d z = 2 π i ⋅ c − 1 \oint_C {f\left( z \right)dz} = 2\pi i \cdot c_{ - 1} Cf(z)dz=2πic1

§02 用举例


2.1 将函数展开成洛朗级数

  函数 f ( z ) = 1 ( z − 1 ) ( z − 2 ) f\left( z \right) = {1 \over {\left( {z - 1} \right)\left( {z - 2} \right)}} f(z)=(z1)(z2)1 在以下三种圆环域处处解析,试把 f ( z ) f\left( z \right) f(z) 在这些区域内展成洛朗级数。

  (1) 0 < ∣ z ∣ < 1 ; 0 < \left| z \right| < 1; 0<z<1;
  (2) 1 < ∣ z ∣ < 2 1 < \left| z \right| < 2 1<z<2
  (3) 2 < ∣ z ∣ < + ∞ 2 < \left| z \right| < + \infty 2<z<+

▲ 图2.1 洛朗级数收敛域

▲ 图2.1 洛朗级数收敛域

  求解: 先把 f ( z ) f\left( z \right) f(z) 进行分式分解 f ( z ) = 1 1 − z − 1 2 − z f\left( z \right) = {1 \over {1 - z}} - {1 \over {2 - z}} f(z)=1z12z1

  (1) 0 < ∣ z ∣ < 1 0 < \left| z \right| < 1 0<z<1 内,由于 ∣ z ∣ < 1 \left| z \right| < 1 z<1 ,从而 ∣ z / 2 ∣ < 1 \left| {z/2} \right| < 1 z/2<1 ,所以 1 1 − z = ∑ n = 0 ∞ z n ,    1 2 − z = 1 2 ∑ n = 0 ∞ ( z 2 ) n {1 \over {1 - z}} = \sum\limits_{n = 0}^\infty {z^n } ,\,\,{1 \over {2 - z}} = {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } 1z1=n=0zn,2z1=21n=0(2z)n 因此 f ( z ) = ∑ n = 0 ∞ z n − 1 2 ∑ n = 0 ∞ ( z 2 ) n = ∑ n = 0 ∞ ( 1 − 1 2 n + 1 ) z n f\left( z \right) = \sum\limits_{n = 0}^\infty {z^n } - {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } = \sum\limits_{n = 0}^\infty {\left( {1 - {1 \over {2^{n + 1} }}} \right)z^n } f(z)=n=0zn21n=0(2z)n=n=0(12n+11)zn

  结果中不包含 z z z 负幂级数,因为 f ( z ) f\left( z \right) f(z) z = 0 z = 0 z=0 处解析。

  (2) 1 < ∣ z ∣ < 2 1 < \left| z \right| < 2 1<z<2 内,由于 ∣ z ∣ > 1 \left| z \right| > 1 z>1 所以 ∣ 1 z ∣ < 1 \left| { {1 \over z}} \right| < 1 z1<1 ,所以 1 1 − z = − 1 z ⋅ 1 1 − 1 z = − 1 z ∑ n = 0 ∞ z − n {1 \over {1 - z}} = - {1 \over z} \cdot {1 \over {1 - {1 \over z}}} = - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } 1z1=z11z11=z1n=0zn 所以 f ( z ) = − 1 z ∑ n = 0 ∞ z − n − 1 2 ∑ n = 0 ∞ ( z 2 ) n f\left( z \right) = - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } - {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } f(z)=z1n=0zn21n=0(2z)n

  (3) 2 < ∣ z ∣ < ∞ 2 < \left| z \right| < \infty 2<z< 时,对于 1 2 − z {1 \over {2 - z}} 2z1 也需要进行另外一种形式的展开 1 2 − z = − 1 z ⋅ 1 1 − 2 z = − 1 z ∑ n = 0 ∞ ( z 2 ) − n {1 \over {2 - z}} = - {1 \over z} \cdot {1 \over {1 - {2 \over z}}} = - {1 \over z}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^{ - n} } 2z1=z11z21=z1n=0(2z)n 所以 f ( z ) = 1 z ∑ n = 0 ∞ ( z 2 ) − n − 1 z ∑ n = 0 ∞ z − n = ∑ n = 0 ∞ ( 2 n − 1 ) z − ( n + 2 ) f\left( z \right) = {1 \over z}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^{ - n} - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } = \sum\limits_{n = 0}^\infty {\left( {2^n - 1} \right)z^{ - \left( {n + 2} \right)} } } f(z)=z1n=0(2z)nz1n=0zn=n=0(2n1)z(n+2)

2.2 利用洛朗级数求围线积分

  求下列个积分值

  (1) ∮ ∣ z ∣ = 3 1 z ( z + 1 ) ( z + 4 ) d z \oint_{\left| z \right| = 3} { {1 \over {z\left( {z + 1} \right)\left( {z + 4} \right)}}dz} z=3z(z+1)(z+4)1dz

  (2) ∮ ∣ z ∣ = 2 z e 1 z 1 − z d z \oint_{\left| z \right| = 2} { { {ze^{ {1 \over z}} } \over {1 - z}}dz} z=21zzez1dz

  求解: 将上面积分内的函数进行洛朗级数展开,获得对应 c − 1 c_{ - 1} c1 系数,那么积分值就等于 2 π i ⋅ c − 1 2\pi i \cdot c_{ - 1} 2πic1

  (1) 函数 f ( z ) = 1 z ( z + 1 ) ( z + 4 ) f\left( z \right) = {1 \over {z\left( {z + 1} \right)\left( {z + 4} \right)}} f(z)=z(z+1)(z+4)1 1 < ∣ z ∣ < 4 1 < \left| z \right| < 4 1<z<4 内处处解析, ∣ z ∣ = 3 \left| z \right| = 3 z=3 圆环域内,所以可以将其展开洛朗级数 f ( z ) = 1 4 z − 1 3 ( z + 1 ) + 1 12 ( z + 4 ) = 1 4 z − 1 3 z ( 1 + 1 z ) + 1 48 ( 1 + z 4 ) f\left( z \right) = {1 \over {4z}} - {1 \over {3\left( {z + 1} \right)}} + {1 \over {12\left( {z + 4} \right)}} = {1 \over {4z}} - {1 \over {3z\left( {1 + {1 \over z}} \right)}} + {1 \over {48\left( {1 + {z \over 4}} \right)}} f(z)=4z13(z+1)1+12(z+4)1=4z13z(1+z1)1+48(1+4z)1 = 1 4 z − 1 3 z + 1 3 z 3 − ⋯ + 1 48 ( 1 − z 4 + z 2 16 − ⋯ ) = {1 \over {4z}} - {1 \over {3z}} + {1 \over {3z^3 }} - \cdots + {1 \over {48}}\left( {1 - {z \over 4} + { {z^2 } \over {16}} - \cdots } \right) =4z13z1+3z31+481(14z+16z2)由此可见 c − 1 = 1 4 − 1 3 = − 1 12 c_{ - 1} = {1 \over 4} - {1 \over 3} = - {1 \over {12}} c1=4131=121 ,从而 ∮ C d z z ( z + 1 ) ( z + 4 ) = 2 π i ( − 1 12 ) = − π i 6 \oint_C { { {dz} \over {z\left( {z + 1} \right)\left( {z + 4} \right)}}} = 2\pi i\left( { - {1 \over {12}}} \right) = - { {\pi i} \over 6} Cz(z+1)(z+4)dz=2πi(121)=6πi

  (2) f ( z ) = z e 1 z 1 − z f\left( z \right) = { {ze^{ {1 \over z}} } \over {1 - z}} f(z)=1zzez1 zl 1 < ∣ z ∣ < + ∞ 1 < \left| z \right| < + \infty 1<z<+ 圆环内洛朗级数展开 f ( z ) = e 1 z − ( 1 − 1 z ) = − ( 1 + 1 z + 1 z 2 + ⋯ ) ( 1 + 1 z + 1 2 ! z 2 + ⋯ ) f\left( z \right) = { {e^{ {1 \over z}} } \over { - \left( {1 - {1 \over z}} \right)}} = - \left( {1 + {1 \over z} + {1 \over {z^2 }} + \cdots } \right)\left( {1 + {1 \over z} + {1 \over {2!z^2 }} + \cdots } \right) f(z)=(1z1)ez1=(1+z1+z21+)(1+z1+2!z21+) = − ( 1 + 2 z + 5 2 z 2 + ⋯ ) = - \left( {1 + {2 \over z} + {5 \over {2z^2 }} + \cdots } \right) =(1+z2+2z25+)

  所以 c − 1 = − 2 c_{ - 1} = - 2 c1=2 ,从而 ∮ C z e 1 z 1 − z d z = 2 π i ⋅ c − 1 = − 4 π i \oint_C { { {ze^{ {1 \over z}} } \over {1 - z}}dz} = 2\pi i \cdot c_{ - 1} = - 4\pi i C1zzez1dz=2πic1=4πi

§03 号与系统


  于离散序列 x [ n ] x\left[ n \right] x[n] 进行z变换,所得到的结果 X ( z ) X\left( z \right) X(z) 实际上就是在其收敛域内的洛朗级数展开。 X ( z ) = ∑ n = − ∞ + ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {x\left[ n \right]z^{ - n} } X(z)=n=+x[n]zn

  通过前面洛朗级数展开公式可以获得 z z z 反变换公式。

§04 业练习


4.1 展开成洛朗级数

4.1.1 在圆环域内展开洛朗级数

  将下列函数在指定的圆环域内展开成洛朗级数。

( 1 )        1 ( z 2 + 1 ) ( z − 2 ) ,     1 < ∣ z ∣ < 2 \left( 1 \right)\,\,\,\,\,\,{1 \over {\left( {z^2 + 1} \right)\left( {z - 2} \right)}},\,\,\,1 < \left| z \right| < 2 (1)(z2+1)(z2)1,1<z<2 ( 2 )      1 z ( 1 − z ) 2 ,     0 < ∣ z ∣ < 2 ;     0 < ∣ z − 1 ∣ < 1 ; \left( 2 \right)\,\,\,\,{1 \over {z\left( {1 - z} \right)^2 }},\,\,\,0 < \left| z \right| < 2;\,\,\,0 < \left| {z - 1} \right| < 1; (2)z(1z)21,0<z<2;0<z1<1; ( 3 )      1 ( z − 1 ) ( z − 2 ) ,    0 < ∣ z − 1 ∣ < 1 ;     1 < ∣ z − 2 ∣ < + ∞ \left( 3 \right)\,\,\,\,{1 \over {\left( {z - 1} \right)\left( {z - 2} \right)}},\,\,0 < \left| {z - 1} \right| < 1;\,\,\,1 < \left| {z - 2} \right| < + \infty (3)(z1)(z2)1,0<z1<1;1<z2<+ ( 4 )      e 1 1 − z ,     1 < ∣ z ∣ < + ∞ \left( 4 \right)\,\,\,\,e^{ {1 \over {1 - z}}} ,\,\,\,1 < \left| z \right| < + \infty (4)e1z1,1<z<+ ( 5 )     1 z 2 ( z − i ) ,     ∣ z − i ∣ < R \left( 5 \right)\,\,\,{1 \over {z^2 \left( {z - i} \right)}},\,\,\,\left| {z - i} \right| < R (5)z2(zi)1,zi<R ( 6 )      sin ⁡ 1 1 − z ,      ∣ z − 1 ∣ > 0 \left( 6 \right)\,\,\,\,\sin {1 \over {1 - z}},\,\,\,\,\left| {z - 1} \right| > 0 (6)sin1z1,z1>0 ( 7 )      ( z − 1 ) ( z − 2 ) ( z − 3 ) ( z − 4 ) ,     3 < ∣ z ∣ < 4 ;    4 < ∣ z ∣ < + ∞ \left( 7 \right)\,\,\,\,{ {\left( {z - 1} \right)\left( {z - 2} \right)} \over {\left( {z - 3} \right)\left( {z - 4} \right)}},\,\,\,3 < \left| z \right| < 4;\,\,4 < \left| z \right| < + \infty (7)(z3)(z4)(z1)(z2),3<z<4;4<z<+

4.1.2 问答题

函数 f ( z ) = tan ⁡ ( 1 z ) f\left( z \right) = \tan \left( { {1 \over z}} \right) f(z)=tan(z1) 能否在 0 < ∣ z ∣ < R   , ( 0 < R < + ∞ ) 0 < \left| z \right| < R\,,\left( {0 < R < + \infty } \right) 0<z<R,(0<R<+) 内展开成洛朗级数?为什么?

4.1.3 正弦波洛朗级数

  如果 k k k 满足 k 2 < 1 k^2 < 1 k2<1 的实数,证明 ∑ n = 0 ∞ k n sin ⁡ [ ( n + 1 ) θ ] = sin ⁡ θ 1 − 2 k cos ⁡ θ + k 2 \sum\limits_{n = 0}^\infty {k^n \sin \left[ {\left( {n + 1} \right)\theta } \right]} = { {\sin \theta } \over {1 - 2k\cos \theta + k^2 }} n=0knsin[(n+1)θ]=12kcosθ+k2sinθ ∑ n = 0 ∞ k n cos ⁡ [ ( n + 1 ) θ ] = cos ⁡ θ − k 1 − 2 k cos ⁡ θ + k 2 \sum\limits_{n = 0}^\infty {k^n \cos \left[ {\left( {n + 1} \right)\theta } \right]} = { {\cos \theta - k} \over {1 - 2k\cos \theta + k^2 }} n=0kncos[(n+1)θ]=12kcosθ+k2cosθk

4.2 利用洛朗级数求围线积分

如果 C C C 为正向圆周, ∣ z ∣ = 3 \left| z \right| = 3 z=3 。求积分 ∮ C f ( z ) d z \oint_C {f\left( z \right)dz} Cf(z)dz 的值。设 f ( z ) f\left( z \right) f(z) 分别为 ( 1 )      1 z ( z + 2 ) ;                        ( 2 )     z + 2 ( z + 1 ) z ; \left( 1 \right)\,\,\,\,{1 \over {z\left( {z + 2} \right)}};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,{ {z + 2} \over {\left( {z + 1} \right)z}}; (1)z(z+2)1;(2)(z+1)zz+2; ( 3 )      1 z ( z + 1 ) 2 ;                      ( 4 )      z ( z + 1 ) ( z + 2 ) ; \left( 3 \right)\,\,\,\,{1 \over {z\left( {z + 1} \right)^2 }};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\,{z \over {\left( {z + 1} \right)\left( {z + 2} \right)}}; (3)z(z+1)21;(4)(z+1)(z+2)z;


● 相关图表链接:

猜你喜欢

转载自blog.csdn.net/zhuoqingjoking97298/article/details/124210881
CA
ss
今日推荐