SSD300网络结构(pytorch)+多尺度训练与测试

一.SSD300

1.如图是预测框的相应feature map 

这里smin是0.2,表示最底层的scale是0.2;smax是0.9,表示最高层的scale是0.9,m代表产生尺度预测的feature map个数。

其中anchor的长宽关系,s就是上图中的scale,a就是上图中的anchor ratio

2.代码

主要由三部分组成

1.vgg作为基础网络

要注意的是作者对38*38*512进行L2正则化,并用一个可学习参数调节通道权重

2.增加大目标检测网络

3.输出包括预测框的偏移量输出与分类

偏移量计算,神经网络学习偏移量即可。

误检的HEM(hard negative mine)loss函数,用于分类

1.回归量与坐标的转换

def cxcy_to_gcxgcy(cxcy, priors_cxcy):
    
    # See https://github.com/weiliu89/caffe/issues/155
    return torch.cat([(cxcy[:, :2] - priors_cxcy[:, :2]) / (priors_cxcy[:, 2:] / 10),  # g_c_x, g_c_y
                      torch.log(cxcy[:, 2:] / priors_cxcy[:, 2:]) * 5], 1)  # g_w, g_h


def gcxgcy_to_cxcy(gcxgcy, priors_cxcy):
    
    return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy[:, :2],  # c_x, c_y
                      torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1)  # w, h

2.anchor与gt框匹配示例,保证每个gt至少有一个anchor


#两个gt框 3个anchor 的框分配示例
import torch
objects = 2
overlap = torch.tensor([[0.4, 0.5, 0.6],
                        [0.8, 0.9, 0.7]])
iou_for_each_prior, index_for_each_prior = torch.max(overlap, dim=0)
print(iou_for_each_prior, index_for_each_prior)

iou_for_each_box, index_for_each_box = torch.max(overlap, dim=1)
print(iou_for_each_box, index_for_each_box)

index_for_each_prior[index_for_each_box] = torch.LongTensor(range(objects))
print(index_for_each_prior)

3.gt框与对应anchor框做回归的示例,其中的true_classes是两个样本,每一个样本有3个box框的类别示例,0代表背景


#两个gt框 3个anchor 的框分配示例
import torch
objects = 2
overlap = torch.tensor([[0.4, 0.5, 0.6],
                        [0.8, 0.9, 0.7]])
iou_for_each_prior, index_for_each_prior = torch.max(overlap, dim=0)
print(iou_for_each_prior, index_for_each_prior)

iou_for_each_box, index_for_each_box = torch.max(overlap, dim=1)
print(iou_for_each_box, index_for_each_box)

index_for_each_prior[index_for_each_box] = torch.LongTensor(range(objects))
print(index_for_each_prior)

batch_size = 2
true_classes = torch.tensor([[0, 1, 3],#每一个样本3个box框的类别示例,0代表背景
                             [2, 4, 5]])
positive_priors = true_classes != 0
print('=positive_priors:\n', positive_priors)


pre_locs = torch.rand((batch_size, 3, 4))
print('==pre_locs[positive_priors].shape:\n', pre_locs[positive_priors].shape)

true_locs = torch.rand((batch_size, 3, 4))
print('==true_locs[positive_priors].shape:\n', true_locs[positive_priors].shape)

4.总体代码:

import torch
import os
from torch import nn
import torch.nn.functional as F
import torchvision
from torchvision import models
from utils import decimate, find_jaccard_overlap, cxcy_to_xy, xy_to_cxcy
from utils import cxcy_to_gcxgcy as cx_cy_dxdy
from math import sqrt
# vgg16 = models.vgg16(pretrained=True)
# print(vgg16)
# vgg16_state_dict = vgg16.state_dict()
# print(list(vgg16_state_dict.keys()))
# print(vgg16_state_dict.values())
# for key, value in vgg16.named_parameters():
#     print('key:', key)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class VGGbase(nn.Module):
    """vgg 主干网络"""
    def __init__(self):
        super(VGGbase, self).__init__()
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
        self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)

        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1)
        self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)#为了保证尺寸不在减少

        self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=6, dilation=6)#空洞卷积扩大感受野
        self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)

        self.load_pretrained_layers()#载入预训练权重
    #(BS, 3, 300, 300)
    def forward(self, image):
        out = F.relu(self.conv1_1(image))
        out = F.relu(self.conv1_2(out))
        out = self.pool1(out)#(B,64, 150, 150)
        out = F.relu(self.conv2_1(out))
        out = F.relu(self.conv2_2(out))
        out = self.pool2(out)  #(B, 128, 75, 75)
        out = F.relu(self.conv3_1(out))
        out = F.relu(self.conv3_2(out))
        out = F.relu(self.conv3_3(out))
        out = self.pool3(out)  # (B, 256, 38, 38)
        out = F.relu(self.conv4_1(out))
        out = F.relu(self.conv4_2(out))
        out = F.relu(self.conv4_3(out))
        conv4_3feats = out     # (B, 512, 38, 38)
        out = self.pool4(out)  # (B, 512, 19, 19)
        out = F.relu(self.conv5_1(out))
        out = F.relu(self.conv5_2(out))
        out = F.relu(self.conv5_3(out))
        out = self.pool5(out)  # (B, 512, 19, 19)
        out = F.relu(self.conv6(out))
        conv7_feats = F.relu(self.conv7(out))# (B, 1024, 19, 19)
        # print(out.shape)
        return conv4_3feats, conv7_feats
    def load_pretrained_layers(self):
        state_dict = self.state_dict()
        param_name = list(state_dict.keys())
        print('param_name', param_name)

        pretrained_state_dict = models.vgg16(pretrained=True).state_dict()
        pretrained_param_name = list(pretrained_state_dict.keys())
        print('pretrained_param_name', pretrained_param_name)
        #由于最后两层与原vgg网络相比多出来的,故权重和偏置要点到为止
        for i, param in enumerate(param_name[:-4]):
            # print('pretrained_state_dict[pretrained_param_name[i]].shape', pretrained_state_dict[pretrained_param_name[i]].shape)
            state_dict[param] = pretrained_state_dict[pretrained_param_name[i]]

        # #最后两层的权重由分类器权重修改而来
        # print("pretrained_state_dict['classifier.0.weight'].shape",pretrained_state_dict['classifier.0.weight'].shape)
        conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].reshape(4096, 512, 7, 7)
        # print('===conv_fc6_weight.dim()==', conv_fc6_weight.dim())
        state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3])#(1024, 512, 3, 3)
        conv_fc6_bias = pretrained_state_dict['classifier.0.bias']#(4096)
        state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4])#(1024)
        # print(pretrained_state_dict['classifier.3.weight'].shape)
        # print(pretrained_state_dict['classifier.6.weight'].shape)

        conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].reshape(4096, 4096, 1, 1)
        state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None])  # (1024, 1024, 1, 1)
        conv_fc7_bias = pretrained_state_dict['classifier.3.bias']  # (4096)
        state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4])  # (1024)

        self.load_state_dict(state_dict)

class AuxiliaryConvolutions(nn.Module):
    "继续在vgg基础上添加conv网络"
    def __init__(self):
        super(AuxiliaryConvolutions, self).__init__()#调用父类初始化
        self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1)
        self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)

        self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1)
        self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)

        self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1)
        self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)

        self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, stride=1)
        self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, stride=1)

        self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, stride=1)
        self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, stride=1)

        self.init_conv2d()

    def init_conv2d(self):
        for c in self.children():
            if isinstance(c, nn.Conv2d):
                nn.init.xavier_uniform_(c.weight)
                # nn.init.kaiming_normal_(c.weight)
                nn.init.constant_(c.bias, 0)

    def forward(self, input):
        out = F.relu(self.conv8_1(input))#(B,1024,19,19)
        out = F.relu(self.conv8_2(out))  #(B,512,19,19)
        conv8_2feats = out
        out = F.relu(self.conv9_1(out))  #(B,512,10,10)
        out = F.relu(self.conv9_2(out))  ##(B,256,5,5)
        conv9_2feats = out
        out = F.relu(self.conv10_1(out))  # (B,128,5,5)
        out = F.relu(self.conv10_2(out))  ##(B,256,3,3)
        conv10_2feats = out
        out = F.relu(self.conv11_1(out))  # (B,128,3,3)
        out = F.relu(self.conv11_2(out))  ##(B,256,1,1)
        conv11_2feats = out
        # print(out.size())
        return conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats

class PredictionConvolutions(nn.Module):
    """卷积层输出框偏移量与分类"""
    def __init__(self, n_classes):
        super(PredictionConvolutions, self).__init__()
        self.n_classes = n_classes
        bboxs={
            'conv4_3': 4,
            'conv7': 6,
            'conv8_2': 6,
            'conv9_2': 6,
            'conv10_2': 4,
            'conv11_2': 4
        }
        self.loc_conv4_3 = nn.Conv2d(512, bboxs['conv4_3']*4, kernel_size=3, padding=1)
        self.loc_conv7 = nn.Conv2d(1024, bboxs['conv7'] * 4, kernel_size=3, padding=1)
        self.loc_conv8_2 = nn.Conv2d(512, bboxs['conv8_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv9_2 = nn.Conv2d(256, bboxs['conv9_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv10_2 = nn.Conv2d(256, bboxs['conv10_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv11_2 = nn.Conv2d(256, bboxs['conv11_2'] * 4, kernel_size=3, padding=1)

        self.cl_conv4_3 = nn.Conv2d(512, bboxs['conv4_3'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv7 = nn.Conv2d(1024, bboxs['conv7'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv8_2 = nn.Conv2d(512, bboxs['conv8_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv9_2 = nn.Conv2d(256, bboxs['conv9_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv10_2 = nn.Conv2d(256, bboxs['conv10_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv11_2 = nn.Conv2d(256, bboxs['conv11_2'] * n_classes, kernel_size=3, padding=1)
        self.init_conv2d()

    def init_conv2d(self):
        for c in self.children():
            if isinstance(c, nn.Conv2d):
                nn.init.xavier_uniform_(c.weight)
                # nn.init.kaiming_normal_(c.weight)
                nn.init.constant_(c.bias, 0)
    def forward(self, conv4_3feats,conv7_feats,conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats):
        batch_size = conv4_3feats.size(0)
        loc_conv4_3 = self.loc_conv4_3(conv4_3feats)#(N, 4*4, 38, 38)
        loc_conv4_3 = loc_conv4_3.permute(0, 2, 3, 1)#(N, 38, 38, 4*4)
        loc_conv4_3 = loc_conv4_3.reshape(batch_size, -1, 4)
        # print(loc_conv4_3.shape)

        loc_conv7 = self.loc_conv7(conv7_feats)  # (N, 6*4, 19, 19)
        loc_conv7 = loc_conv7.permute(0, 2, 3, 1)
        loc_conv7 = loc_conv7.reshape(batch_size, -1, 4)

        loc_conv8_2 = self.loc_conv8_2(conv8_2feats)  # (N, 6*4, 10, 10)
        loc_conv8_2 = loc_conv8_2.permute(0, 2, 3, 1)
        loc_conv8_2 = loc_conv8_2.reshape(batch_size, -1, 4)

        loc_conv9_2 = self.loc_conv9_2(conv9_2feats)  # (N, 6*4, 5, 5)
        loc_conv9_2 = loc_conv9_2.permute(0, 2, 3, 1)
        loc_conv9_2 = loc_conv9_2.reshape(batch_size, -1, 4)

        loc_conv10_2 = self.loc_conv10_2(conv10_2feats)  # (N, 4*4, 3, 3)
        loc_conv10_2 = loc_conv10_2.permute(0, 2, 3, 1)
        loc_conv10_2 = loc_conv10_2.reshape(batch_size, -1, 4)

        loc_conv11_2 = self.loc_conv11_2(conv11_2feats)  # (N, 4*4, 1, 1)
        loc_conv11_2 = loc_conv11_2.permute(0, 2, 3, 1)
        loc_conv11_2 = loc_conv11_2.reshape(batch_size, -1, 4)

        cl_conv4_3 = self.cl_conv4_3(conv4_3feats)  # (N, 4*n_classes, 38, 38)
        cl_conv4_3 = cl_conv4_3.permute(0, 2, 3, 1)
        cl_conv4_3 = cl_conv4_3.reshape(batch_size, -1, self.n_classes)

        cl_conv7 = self.cl_conv7(conv7_feats)  # (N, 6*n_classes, 19, 19)
        cl_conv7 = cl_conv7.permute(0, 2, 3, 1)
        cl_conv7 = cl_conv7.reshape(batch_size, -1, self.n_classes)

        cl_conv8_2 = self.cl_conv8_2(conv8_2feats)  # (N, 6*n_classes, 10, 10)
        cl_conv8_2 = cl_conv8_2.permute(0, 2, 3, 1)
        cl_conv8_2 = cl_conv8_2.reshape(batch_size, -1, self.n_classes)

        cl_conv9_2 = self.cl_conv9_2(conv9_2feats)  # (N, 6*n_classes, 5, 5)
        cl_conv9_2 = cl_conv9_2.permute(0, 2, 3, 1)
        cl_conv9_2 = cl_conv9_2.reshape(batch_size, -1, self.n_classes)

        cl_conv10_2 = self.cl_conv10_2(conv10_2feats)  # (N, 4*n_classes, 3, 3)
        cl_conv10_2 = cl_conv10_2.permute(0, 2, 3, 1)
        cl_conv10_2 = cl_conv10_2.reshape(batch_size, -1, self.n_classes)

        cl_conv11_2 = self.cl_conv11_2(conv11_2feats)  # (N, 4*n_classes, 1, 1)
        cl_conv11_2 = cl_conv11_2.permute(0, 2, 3, 1)
        cl_conv11_2 = cl_conv11_2.reshape(batch_size, -1, self.n_classes)
        # return loc_conv4_3, loc_conv7, loc_conv8_2, loc_conv9_2, loc_conv10_2, loc_conv11_2,\
        #        cl_conv4_3, cl_conv7, cl_conv8_2, cl_conv9_2, cl_conv10_2, cl_conv11_2
        locs = torch.cat((loc_conv4_3, loc_conv7, loc_conv8_2, loc_conv9_2, loc_conv10_2, loc_conv11_2),dim=1)
        class_scores = torch.cat((cl_conv4_3, cl_conv7, cl_conv8_2, cl_conv9_2, cl_conv10_2, cl_conv11_2),dim=1)
        return locs,class_scores#(10, 8732, 4) (10, 8732, 21)

class SSD300(nn.Module):
    def __init__(self, n_classes):
        super(SSD300, self).__init__()
        self.n_classes = n_classes
        self.base_vgg = VGGbase()
        self.aux_convs = AuxiliaryConvolutions()
        self.pre_convs = PredictionConvolutions(self.n_classes)

        #对conv4_3添加每个通道添加可学习参数,并进行L2正则化
        self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1))
        nn.init.constant_(self.rescale_factors, 20)

        self.create_prior_boxes()

    def forward(self, input):
        conv4_3feats, conv7_feats = self.base_vgg(input)#(N,512,38,38) (N,1024,19,19)
        norm = torch.pow(conv4_3feats, 2).sum(dim=1, keepdim=True).sqrt()#(B, 1, 38, 38)对所有通道的每一行求平方和L2正则 开更号
        conv4_3feats = conv4_3feats/norm*self.rescale_factors

        conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats = self.aux_convs(conv7_feats)

        locs, class_scores = self.pre_convs(conv4_3feats, conv7_feats, conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats)
        return locs, class_scores#(10, 8732, 4) (10, 8732, 21)

    def create_prior_boxes(self):
        """创建SSD300的先验框(cx, cy, w, h)
            (8372,4)个box"""
        fmap_size = {'conv4_3': 38, 'conv7': 19, 'conv8_2': 10,
                     'conv9_2': 5, 'conv10_2': 3, 'conv11_2': 1}
        anchor_scale = {'conv4_3': 0.1, 'conv7': 0.2, 'conv8_2': 0.375,
                        'conv9_2': 0.55, 'conv10_2': 0.725, 'conv11_2': 0.9}
        anchor_ratio = {'conv4_3': [1, 2, 0.5], 'conv7': [1, 2, 3, 0.5, 0.33], 'conv8_2': [1, 2, 3, 0.5, 0.33],
                        'conv9_2': [1, 2, 3, 0.5, 0.33], 'conv10_2': [1, 2, 0.5], 'conv11_2': [1, 2, 0.5]}
        prior_boxes = []
        for index, fmap in enumerate(fmap_size):
            for i in range(fmap_size[fmap]):
                for j in range(fmap_size[fmap]):
                    cy, cx = (i + 0.5) / fmap_size[fmap], (j + 0.5) / fmap_size[fmap]
                    for ratio in anchor_ratio[fmap]:
                        prior_boxes.append([cx, cy, anchor_scale[fmap] * sqrt(ratio), anchor_scale[fmap] / sqrt(ratio)])

                        if ratio == 1:  # 添加额外框
                            try:
                                extra_scale = sqrt(anchor_scale[fmap] * anchor_scale[fmap_size[index + 1]])
                            except:
                                extra_scale = 1.
                            prior_boxes.append([cx, cy, extra_scale, extra_scale])
            # print('len(prior_boxes)',len(prior_boxes))
        # prior_boxes = [[1,2,3,4],
        #                [3,4,5,6]]
        prior_boxes = torch.FloatTensor(prior_boxes).to(device)
        prior_boxes.clamp_(0, 1)  # 防止越界
        print('prior_boxes.shape', prior_boxes.shape)
        # print(prior_boxes)
        return prior_boxes#(8732, 4)

class MultiBoxLoss(nn.Module):
    """定位loss和分类loss,其中定位loss采用Hard Negative Mining."""
    def __init__(self, prior_cxcy, threshold=0.5, neg_pos_ratio=3, alph=1.):
        super(MultiBoxLoss, self).__init__()
        self.prior_cxcy = prior_cxcy#(8732,4)
        self.priors_xy = cxcy_to_xy(prior_cxcy)
        self.threshold = threshold
        self.neg_pos_ratio = neg_pos_ratio
        self.alph = alph

        self.smooth_l1 = nn.L1Loss()
        self.cross_entropy = nn.CrossEntropyLoss(reduce=False)#不计算batch的平均loss因为要用到hard mine模式

    def forward(self, prediction_locs, prediction_scores, boxes, labels):
        """
        prediction_locs,(N, 8732, 4)
        prediction_scores,(N, 8732, n_classes)
        boxes,[[],[[],[]]]
        labels[[],[]]
        """
        batch_size = prediction_locs.shape[0]#(N,)
        n_priors = self.prior_cxcy.shape[0]#(8732,)
        n_classes = prediction_scores.shape[-1]#(n_classes)
        # print('==batch_size', batch_size)
        assert batch_size == len(boxes)
        assert n_priors == prediction_locs.shape[1] == prediction_scores.shape[1]

        true_locs = torch.zeros((batch_size, n_priors, 4),dtype=torch.float)#(N, 8732, 4)
        true_classes = torch.zeros((batch_size, n_priors),dtype=torch.long)#(N, 8732)
        for i in range(batch_size):
            # print('===boxes[i]', boxes[i])
            objects = boxes[i].shape[0]   #(objects, 4)  (8732, 4)
            overlap = find_jaccard_overlap(boxes[i], self.priors_xy)#(objects, 8732)
            # 每个先验框与gt框的最大IOU 以及索引
            iou_for_each_prior, index_for_each_prior = overlap.max(dim=0)
            # 每个gt框与先验框的最大IOU 以及索引
            iou_for_each_box, index_for_each_box = overlap.max(dim=1)

            #为了防止没有相应的先验框与gt相交
            index_for_each_prior[index_for_each_box] = torch.LongTensor(range(objects)).to(device)
            iou_for_each_prior[index_for_each_box] = 1.

            label_for_each_prior = labels[i][index_for_each_prior]#得到对应的每个先验框的标签
            label_for_each_prior[iou_for_each_prior<self.threshold] = 0#将小于阈值的置为背景

            #依次存储batchsize
            true_classes[i] = label_for_each_prior
            true_locs[i] = cx_cy_dxdy(xy_to_cxcy(boxes[i][index_for_each_prior]), self.prior_cxcy)#得到偏移量
        print('true_classes.dtype',true_classes.dtype)
        positive_priors = true_classes != 0#batch_size 正样本(N,8732)
        print('positive_priors.dtype',positive_priors.dtype)
        print('==positive_priors.shape', positive_priors.shape)
        print('==positive_priors', positive_priors)
        loc_loss = self.smooth_l1(prediction_locs[positive_priors], true_locs[positive_priors])
        n_postives = positive_priors.sum(dim=1)#(N,)
        n_hard_negatives = self.neg_pos_ratio*n_postives#(N,)

        confidence_loss_all = self.cross_entropy(prediction_scores.reshape(-1, n_classes), true_classes.reshape(-1))
        confidence_loss_all = confidence_loss_all.reshape(batch_size, n_priors)
        print('==confidence_loss_all.shape', confidence_loss_all.shape)
        confidence_loss_pos = confidence_loss_all[positive_priors]
        #
        print('==confidence_loss_pos.shape', confidence_loss_pos.shape)

        confidence_loss_neg = confidence_loss_all.clone()#(N, 8732)
        confidence_loss_neg[positive_priors] = 0.#(N, 8732)#把正样本loss清零再去做HEM
        confidence_loss_neg, _ = confidence_loss_neg.sort(dim=1, descending=True)#(N,8732)按行从大到小
        hardness_ranks = torch.LongTensor(range(n_priors)).unsqueeze(0).expand_as(confidence_loss_neg) # (N, 8732)
        hard_negatives = hardness_ranks < n_hard_negatives.unsqueeze(1)  # (N, 8732)
        confidence_loss_hard = confidence_loss_all[hard_negatives]
        # print('==confidence_loss_hard.shape', confidence_loss_hard.shape)
        confidence_loss = (confidence_loss_pos.sum()+confidence_loss_hard.sum())/n_postives.sum().float()

        return loc_loss+self.alph*confidence_loss

def test_vgg_base():
    model = VGGbase()
    x = torch.rand((10, 3, 300, 300))
    conv4_3feats, conv7_feats = model(x)
    print('conv4_3feats.shape:', conv4_3feats.shape)
    print('conv7_feats.shape:', conv7_feats.shape)
def test_AUx_conv():
    model = AuxiliaryConvolutions()
    # (B, 1024, 19, 19)
    x = torch.rand((10, 1024, 19, 19))
    conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats = model(x)
    print('conv8_2feats.shape:', conv8_2feats.shape)
    print('conv9_2feats.shape:', conv9_2feats.shape)
    print('conv10_2feats.shape:', conv10_2feats.shape)
    print('conv11_2feats.shape:', conv11_2feats.shape)

def test_pre_conv():
    n_classes = 21
    model = PredictionConvolutions(n_classes)
    conv4_3feats = torch.rand((10, 512, 38, 38))
    conv7_feats = torch.rand((10, 1024, 19, 19))
    conv8_2feats = torch.rand((10, 512, 10, 10))
    conv9_2feats = torch.rand((10, 256, 5, 5))
    conv10_2feats = torch.rand((10, 256, 3, 3))
    conv11_2feats = torch.rand((10, 256, 1, 1))
    locs, class_scores = model(conv4_3feats, conv7_feats, conv8_2feats, conv9_2feats, conv10_2feats, conv11_2feats)
    # print(loc_conv4_3.shape, loc_conv7.shape, loc_conv8_2.shape, loc_conv9_2.shape,
    #       loc_conv10_2.shape, loc_conv11_2.shape,\
    #            cl_conv4_3.shape, cl_conv7.shape, cl_conv8_2.shape, cl_conv9_2.shape,
    #       cl_conv10_2.shape, cl_conv11_2.shape)
    print(locs.shape)
    print(class_scores.shape)
def test_SSD300():
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'

    n_classes = 21
    model = SSD300(n_classes)
    print('==model', model)
    x = torch.rand((10, 3, 300, 300))
    locs, class_scores = model(x)
    print('locs.shape', locs.shape)
    print('class_scores.shape', class_scores.shape)

def test_mutiboxloss():
    prior_boxes = create_prior_boxes()
    loss_model = MultiBoxLoss(prior_boxes)
    prediction_locs = torch.rand(2, 8732, 4)
    prediction_scores = torch.rand(2, 8732, 21)
    boxes = [torch.tensor([[0.1040, 0.1946, 0.9400, 0.9480],
             [0.3140, 0.0973, 0.5760, 0.3756]]).to(device),
             torch.tensor([[0.0000, 0.6107, 0.8540, 0.7787]]).to(device)]
    labels = [torch.tensor([13,  15]).to(device),
              torch.tensor([4]).to(device)]
    # boxes = torch.tensor([[[1, 2, 3, 4]],
    #                       [[7, 8, 9, 10],
    #                       [4, 5, 6, 7]]])
    # labels = torch.tensor([[1],
    #                     [1, 3]])
    loss_sclar = loss_model(prediction_locs, prediction_scores, boxes, labels)
    print('==loss_sclar',loss_sclar)

def create_prior_boxes():
    """创建SSD300的先验框(cx, cy, w, h)
        (8prediction_locs, prediction_scores, boxes, labels372,4)个box"""
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    from math import sqrt
    fmap_size = {'conv4_3':38, 'conv7':19, 'conv8_2':10,
                 'conv9_2':5, 'conv10_2':3, 'conv11_2':1}
    anchor_scale = {'conv4_3':0.1,'conv7':0.2,'conv8_2':0.375,
                 'conv9_2':0.55,'conv10_2':0.725,'conv11_2':0.9}
    anchor_ratio = {'conv4_3':[1,2,0.5], 'conv7':[1,2,3,0.5,0.33], 'conv8_2':[1,2,3,0.5,0.33],
                   'conv9_2':[1,2,3,0.5,0.33], 'conv10_2':[1,2,0.5], 'conv11_2':[1,2,0.5]}
    prior_boxes = []
    for index,fmap in enumerate(fmap_size):
        for i in range(fmap_size[fmap]):
            for j in range(fmap_size[fmap]):
                cy,cx = (i+0.5)/fmap_size[fmap], (j+0.5)/fmap_size[fmap]
                for ratio in anchor_ratio[fmap]:
                    prior_boxes.append([cx, cy, anchor_scale[fmap]*sqrt(ratio), anchor_scale[fmap]/sqrt(ratio)])

                    if ratio==1:#添加额外框
                        try:
                            extra_scale = sqrt(anchor_scale[fmap]*anchor_scale[fmap_size[index+1]])
                        except:
                            extra_scale = 1.
                        prior_boxes.append([cx, cy, extra_scale, extra_scale])
        # print('len(prior_boxes)',len(prior_boxes))
    # prior_boxes = [[1,2,3,4],
    #                [3,4,5,6]]
    prior_boxes = torch.FloatTensor(prior_boxes).to(device)
    prior_boxes.clamp_(0,1)#防止越界
    print('prior_boxes.shape', prior_boxes.shape)
    # print(prior_boxes)
    return prior_boxes

def decimate(tensor, m):
    """
    Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value.

    This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size.

    :param tensor: tensor to be decimated
    :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension
    :return: decimated tensor
    """
    assert tensor.dim() == len(m)
    for d in range(tensor.dim()):
        if m[d] is not None:
            tensor = tensor.index_select(dim=d,
                                         index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long())
            # print('==tensor.shape:', tensor.shape)
    return tensor
def test_fc_conv():
    """fc (4096,25088)-->conv (1024,512,3,3)"""
    fc_weight_init = torch.rand(4096, 25088)
    fc_weight = fc_weight_init.reshape(4096, 512, 7, 7)
    m = [4, None, 3, 3]
    conv_weight = decimate(fc_weight, m)
    print('==conv_weight.shape', conv_weight.shape)

def index_select():
    x = torch.linspace(1, 12, steps=12, requires_grad=True).reshape(3, 4)
    print('==x', x)
    print(x.dtype)
    print(x.data)
    print(x.data.dtype)
    # indices = torch.LongTensor([0, 2])
    # y = torch.index_select(x, 0, indices)  # 对行操作
    # print('==y', y)
    #
    # z = torch.index_select(x, 1, indices)  # 对列操作
    # print('==z', z)
    #
    # z = torch.index_select(y, 1, indices)  # 对列操作
    # print('==z', z)


if __name__ == '__main__':
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    # test_vgg_base()
    # test_AUx_conv()
    # test_pre_conv()
    # test_fc_conv()
    # index_select()
    # create_prior_boxes()
    # test_SSD300()
    test_mutiboxloss()




二.多尺度训练与测试

1.多尺度训练

目的:用不同的尺度去帮助模型适应各种大小的目标,获得对尺寸的鲁棒性。一般是每个batch随机选择一个合适的尺度进行训练即可.

2.多尺度测试

2.1 one-stage 多尺度测试

对单个尺度的结果先进行NMS,在resize成同一个尺度大小在进行一次NMS.先对单个尺度结果进行NMS可以减少推理时间.

2.2 two-stage 多尺度测试

(1) 不同尺度图,通过Backbone+RPN和各自的NMS之后,会得到各自的proposals。再把尺度统一到同一张图的大小上去,然后合并到一起做阈值为0.7的NMS,得到Proposals。

(2) R-CNN阶段依然希望用多尺度,所以需要把proposals分别resize到橙色和绿色的图的尺寸上去,然后各自过R-CNN。后面的步骤与RPN和one stage是一样的,先各自做NMS,然后Resize到统一尺寸后再合并做阈值为0.5的NMS。

参考:
https://mp.weixin.qq.com/s/lBhPjOiT_05WXwxFCXj2mQ

猜你喜欢

转载自blog.csdn.net/fanzonghao/article/details/104873229
今日推荐