第四章 不定积分(二)

  本文接自上一篇《第四章 不定积分(一)》,继续记录总习题四。

总习题四

4.求下列不定积分(其中 a a b b 为常数):

(7) tan 4 x d x ; \displaystyle\int\tan^4x\mathrm{d}x;


tan 4 x d x = tan 2 x ( sec 2 x 1 ) d x = tan 2 x d ( tan x ) ( sec 2 x 1 ) d x = 1 3 tan 3 x tan x + x + C . \begin{aligned} \displaystyle\int\tan^4x\mathrm{d}x&=\displaystyle\int\tan^2x(\sec^2x-1)\mathrm{d}x\\ &=\displaystyle\int\tan^2x\mathrm{d}(\tan x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\cfrac{1}{3}\tan^3x-\tan x+x+C. \end{aligned}
这道题主要利用三角变换公式进行计算

(10) a + x a x d x ; \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x;

解一
a + x a x d x = a + x a 2 x 2 d x = a 1 1 ( x a ) 2 d ( x a ) 1 2 d ( a 2 x 2 ) a 2 x 2 = a arcsin x a a 2 x 2 + C . \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int\cfrac{a+x}{\sqrt{a^2-x^2}}\mathrm{d}x=a\displaystyle\int\cfrac{1}{\sqrt{1-\left(\cfrac{x}{a}\right)^2}}\mathrm{d}\left(\cfrac{x}{a}\right)-\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(a^2-x^2)}{\sqrt{a^2-x^2}}\\ &=a\arcsin\cfrac{x}{a}-\sqrt{a^2-x^2}+C. \end{aligned}
解二  令 u = a + x a x u=\sqrt{\cfrac{a+x}{a-x}} ,即 x = a u 2 1 u 2 + 1 x=a\cfrac{u^2-1}{u^2+1} ,则
a + x a x d x = u 4 a u ( 1 + u 2 ) 2 d u = 2 a u d ( 1 1 + u 2 ) = 2 a u 1 + u 2 + 2 a 1 + u 2 d u = 2 a u 1 + u 2 + 2 a arctan u + C = ( x a ) a + x a x + 2 a arctan a + x a x + C . \begin{aligned} \displaystyle\int\sqrt{\cfrac{a+x}{a-x}}\mathrm{d}x&=\displaystyle\int u\cdot\cfrac{4au}{(1+u^2)^2}\mathrm{d}u=\displaystyle\int-2au\mathrm{d}\left(\cfrac{1}{1+u^2}\right)\\ &=-\cfrac{2au}{1+u^2}+\displaystyle\int\cfrac{2a}{1+u^2}\mathrm{d}u\\ &=-\cfrac{2au}{1+u^2}+2a\arctan u+C\\ &=(x-a)\sqrt{\cfrac{a+x}{a-x}}+2a\arctan\sqrt{\cfrac{a+x}{a-x}}+C. \end{aligned}
这道题可以利用换元积分或进行分式变换求解

(11) d x x ( x + 1 ) ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}};

解一
d x x ( x + 1 ) = d x ( x + 1 2 ) 2 ( 1 2 ) 2 = x = 1 2 + 1 2 sec u sec u d u = ln sec u + tan u + C = ln 2 x + 1 + 2 x ( x + 1 ) + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{\left(x+\cfrac{1}{2}\right)^2-\left(\cfrac{1}{2}\right)^2}}\\ &\xlongequal{x=-\cfrac{1}{2}+\cfrac{1}{2}\sec u}\displaystyle\int\sec u\mathrm{d}u=\ln|\sec u+\tan u|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
解二  当 x > 0 x>0 时,因为 1 x ( x + 1 ) = 1 x x 1 + x \cfrac{1}{\sqrt{x(x+1)}}=\cfrac{1}{x}\sqrt{\cfrac{x}{1+x}} ,故令 u = x 1 + x u=\sqrt{\cfrac{x}{1+x}} ,即 x = u 2 1 u 2 x=\cfrac{u^2}{1-u^2} ,则
d x x ( x + 1 ) = 2 1 u 2 d u = ( 1 1 u + 1 1 + u ) d u = ln 1 + u 1 u + C = ln 1 + x + x 1 + x x + C = ln 2 x + 1 + 2 x ( x + 1 ) + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}&=\displaystyle\int\cfrac{2}{1-u^2}\mathrm{d}u=\displaystyle\int\left(\cfrac{1}{1-u}+\cfrac{1}{1+u}\right)\mathrm{d}u\\ &=\ln|\cfrac{1+u}{1-u}|+C=\ln\left|\cfrac{\sqrt{1+x}+\sqrt{x}}{\sqrt{1+x}-\sqrt{x}}\right|+C\\ &=\ln|2x+1+2\sqrt{x(x+1)}|+C. \end{aligned}
  当 x < 1 x<-1 时,同样可得 d x x ( x + 1 ) = ln 2 x + 1 + 2 x ( x + 1 ) + C \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{x(x+1)}}=\ln|2x+1+2\sqrt{x(x+1)}|+C 。(这道题主要用分段或配方进行计算

(15) d x x 2 x 2 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}};

   d x x 2 x 2 1 = x = 1 u u d u 1 u 2 = 1 u 2 + C = x 2 1 x + C , \displaystyle\int\cfrac{\mathrm{d}x}{x^2\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{u}}-\displaystyle\int\cfrac{u\mathrm{d}u}{\sqrt{1-u^2}}=\sqrt{1-u^2}+C=\cfrac{\sqrt{x^2-1}}{x}+C, 易知当 x < 0 x<0 x > 0 x>0 时的结果相同。(这道题主要利用换元积分计算

(16) d x ( a 2 x 2 ) 5 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}};

  设 x = a sin u ( π 2 < u < π 2 ) x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) ,则 a 2 x 2 = a cos u , d x = a cos u d u \sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u ,于是
d x ( a 2 x 2 ) 5 2 = 1 a 4 sec 4 u d u = 1 a 4 ( tan 2 u + 1 ) d ( tan u ) = tan 3 u 3 a 4 + tan u a 4 + C = 1 3 a 4 [ x 3 ( a 2 x 2 ) 3 + 3 x a 2 x 2 ] + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(a^2-x^2)^{\frac{5}{2}}}&=\cfrac{1}{a^4}\displaystyle\int\sec^4u\mathrm{d}u=\cfrac{1}{a^4}\displaystyle\int(\tan^2u+1)\mathrm{d}(\tan u)\\ &=\cfrac{\tan^3u}{3a^4}+\cfrac{\tan u}{a^4}+C\\ &=\cfrac{1}{3a^4}\left[\cfrac{x^3}{\sqrt{(a^2-x^2)^3}}+\cfrac{3x}{\sqrt{a^2-x^2}}\right]+C. \end{aligned}
这道题主要利用三角函数进行替换

(17) d x x 4 1 + x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}};


d x x 4 1 + x 2 = x = 1 u u 3 d u 1 + u 2 = ( u 1 + u 2 u 1 + u 2 ) d u = 1 3 ( 1 + u 2 ) 3 2 + 1 + u 2 + C = 1 3 ( 1 + x 2 ) 3 x 3 + 1 + x 2 x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x^4\sqrt{1+x^2}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{-u^3\mathrm{d}u}{\sqrt{1+u^2}}=-\displaystyle\int\left(u\sqrt{1+u^2}-\cfrac{u}{\sqrt{1+u^2}}\right)\mathrm{d}u\\ &=-\cfrac{1}{3}(1+u^2)^{\frac{3}{2}}+\sqrt{1+u^2}+C\\ &=-\cfrac{1}{3}\cfrac{\sqrt{(1+x^2)^3}}{x^3}+\cfrac{\sqrt{1+x^2}}{x}+C. \end{aligned}
  易知当 x < 0 x<0 x > 0 x>0 时结果相同。(这道题用倒数换元再拆分因式计算

(21) arctan x d x ; \displaystyle\int\arctan\sqrt{x}\mathrm{d}x;


arctan x d x = arctan x d ( 1 + x ) = ( 1 + x ) arctan x 1 2 x d x = ( 1 + x ) arctan x x + C . \begin{aligned} \displaystyle\int\arctan\sqrt{x}\mathrm{d}x&=\displaystyle\int\arctan\sqrt{x}\mathrm{d}(1+x)=(1+x)\arctan\sqrt{x}-\displaystyle\int\cfrac{1}{2\sqrt{x}}\mathrm{d}x\\ &=(1+x)\arctan\sqrt{x}-\sqrt{x}+C. \end{aligned}
这道题在积分时凑出一个因式简化计算

(22) 1 + cos x sin x d x ; \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x;


1 + cos x sin x d x = 2 cos x 2 2 sin x 2 cos x 2 d x = ± 2 csc x 2 d ( x 2 ) = ± 2 ln csc x 2 cot x 2 + C . \begin{aligned} \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sqrt{2}|\cos\cfrac{x}{2}|}{2\sin\cfrac{x}{2}\cos\cfrac{x}{2}}\mathrm{d}x=\pm\sqrt{2}\displaystyle\int\csc\cfrac{x}{2}\mathrm{d}\left(\cfrac{x}{2}\right)\\ &=\pm\sqrt{2}\ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|+C. \end{aligned}
  上式当 cos x 2 > 0 \cos\cfrac{x}{2}>0 时取正,当 cos x 2 < 0 \cos\cfrac{x}{2}<0 时取负。
  当 cos x 2 > 0 \cos\cfrac{x}{2}>0 时,
ln csc x 2 cot x 2 = ln 1 cos x 2 sin x 2 = ln ( csc x 2 cot x 2 ) . \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
  当 cos x 2 < 0 \cos\cfrac{x}{2}<0 时,
ln csc x 2 cot x 2 = ln 1 cos x 2 sin x 2 = ln ( csc x 2 + cot x 2 ) = ln ( csc x 2 cot x 2 ) . \ln|\csc\cfrac{x}{2}-\cot\cfrac{x}{2}|=\ln\cfrac{1-\cos\cfrac{x}{2}}{|\sin\cfrac{x}{2}|}\\ =\ln\left(|\csc\cfrac{x}{2}|+|\cot\cfrac{x}{2}|\right)=-\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right).
  因此有
1 + cos x sin x d x = 2 ln ( csc x 2 cot x 2 ) + C . \displaystyle\int\cfrac{\sqrt{1+\cos x}}{\sin x}\mathrm{d}x=\sqrt{2}\ln\left(|\csc\cfrac{x}{2}|-|\cot\cfrac{x}{2}|\right)+C.
这道题主要利用了分段求解

(23) x 3 ( 1 + x 8 ) 2 d x ; \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x;


x 3 ( 1 + x 8 ) 2 d x = 1 4 1 ( 1 + x 8 ) 2 d ( x 4 ) = u = x 4 1 4 1 ( 1 + u 2 ) 2 d u . \displaystyle\int\cfrac{x^3}{(1+x^8)^2}\mathrm{d}x=\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+x^8)^2}\mathrm{d}(x^4)\xlongequal{u=x^4}\cfrac{1}{4}\displaystyle\int\cfrac{1}{(1+u^2)^2}\mathrm{d}u.
  设 u = tan t ( π 2 < t < π 2 ) u=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) ,则 1 + u 2 = sec 2 t , d u = sec 2 t d t 1+u^2=\sec^2t,\mathrm{d}u=\sec^2t\mathrm{d}t ,于是
原式 = 1 4 cos 2 t d t = 2 t + sin 2 t 16 + C = arctan x 4 8 + x 4 8 ( 1 + x 8 ) + C . \begin{aligned} \text{原式}&=\cfrac{1}{4}\displaystyle\int\cos^2t\mathrm{d}t=\cfrac{2t+\sin2t}{16}+C\\ &=\cfrac{\arctan x^4}{8}+\cfrac{x^4}{8(1+x^8)}+C. \end{aligned}
这道题利用了两次换元求解

(26) sin x 1 + sin x d x ; \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x;

解一
  令 u = tan x 2 u=\tan\cfrac{x}{2} ,得
sin x 1 + sin x d x = 4 u ( 1 + u ) 2 ( 1 + u 2 ) d u = [ 2 ( 1 + u ) 2 + 2 1 + u 2 ] d u = 2 1 + u + 2 arctan u + C = 2 1 + tan x 2 + x + C . \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{4u}{(1+u)^2(1+u^2)}\mathrm{d}u=\displaystyle\int\left[\cfrac{-2}{(1+u)^2}+\cfrac{2}{1+u^2}\right]\mathrm{d}u\\ &=\cfrac{2}{1+u}+2\arctan u+C=\cfrac{2}{1+\tan\cfrac{x}{2}}+x+C. \end{aligned}
解二
sin x 1 + sin x d x = sin x ( 1 sin x ) cos 2 x d x = 1 cos 2 x d ( cos x ) ( sec 2 x 1 ) d x = sec x tan x + x + C . \begin{aligned} \displaystyle\int\cfrac{\sin x}{1+\sin x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x(1-\sin x)}{\cos^2x}\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{\cos^2x}\mathrm{d}(\cos x)-\displaystyle\int(\sec^2x-1)\mathrm{d}x\\ &=\sec x-\tan x+x+C. \end{aligned}
这道题主要利用了换元或三角变换求解

(27) x + sin x 1 + cos x d x ; \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x;


x + sin x 1 + cos x d x = x 2 sec 2 x 2 d x + tan x 2 d x = x d ( tan x 2 ) + tan x 2 d x = x tan x 2 + C . \begin{aligned} \displaystyle\int\cfrac{x+\sin x}{1+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{x}{2}\sec^2\cfrac{x}{2}\mathrm{d}x+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(\tan\cfrac{x}{2})+\displaystyle\int\tan\cfrac{x}{2}\mathrm{d}x\\ &=x\tan\cfrac{x}{2}+C. \end{aligned}
这道题主要倍角公式求解,另当该函数为定积分时,有另一种解法,在总习题五第十一题(1),传送门在这里

(28) e sin x x cos 3 x sin x cos 2 x d x ; \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x;


e sin x x cos 3 x sin x cos 2 x d x = x e sin x cos x d x e sin x tan x sec x d x = x d ( e sin x ) e sin x d ( sec x ) = x e sin x e sin x d x ( sec x e sin x e sin x d x ) = ( x sec x ) e sin x + C . \begin{aligned} \displaystyle\int e^{\sin x}\cfrac{x\cos^3x-\sin x}{\cos^2x}\mathrm{d}x&=\displaystyle\int xe^{\sin x}\cos x\mathrm{d}x-\displaystyle\int e^{\sin x}\tan x\sec x\mathrm{d}x\\ &=\displaystyle\int x\mathrm{d}(e^{\sin x})-\displaystyle\int e^{\sin x}\mathrm{d}(\sec x)\\ &=xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x-(\sec xe^{\sin x}-\displaystyle\int e^{\sin x}\mathrm{d}x)\\ &=(x-\sec x)e^{\sin x}+C. \end{aligned}
这道题利用分部积分法化简至有相同部分可以相互抵消求解

(31) e 3 x + e x e 4 x e 2 x + 1 d x ; \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x;


e 3 x + e x e 4 x e 2 x + 1 d x = e x + e x e 2 x + e 2 x 1 d x = d ( e x e x ) ( e x e x ) 2 + 1 = arctan ( e x e x ) + C . \begin{aligned} \displaystyle\int\cfrac{e^{3x}+e^x}{e^{4x}-e^{2x}+1}\mathrm{d}x&=\displaystyle\int\cfrac{e^{x}+e^{-x}}{e^{2x}+e^{-2x}-1}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(e^{x}-e^{-x})}{(e^{x}-e^{-x})^2+1}\\ &=\arctan(e^{x}-e^{-x})+C. \end{aligned}
这道题利用分式约分求解

(33) ln 2 ( x + 1 + x 2 ) d x ; \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x;


ln 2 ( x + 1 + x 2 ) d x = x ln 2 ( x + 1 + x 2 ) 2 x ln ( x + 1 + x 2 ) 1 + x 2 d x = x ln 2 ( x + 1 + x 2 ) 2 ln ( x + 1 + x 2 ) d ( 1 + x 2 ) = x ln 2 ( x + 1 + x 2 ) 2 1 + x 2 ln ( x + 1 + x 2 ) + 2 x + C . \begin{aligned} \displaystyle\int\ln^2(x+\sqrt{1+x^2})\mathrm{d}x&=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int\cfrac{2x\ln(x+\sqrt{1+x^2})}{\sqrt{1+x^2}}\mathrm{d}x\\ &=x\ln^2(x+\sqrt{1+x^2})-\displaystyle\int2\ln(x+\sqrt{1+x^2})\mathrm{d}(\sqrt{1+x^2})\\ &=x\ln^2(x+\sqrt{1+x^2})-2\sqrt{1+x^2}\ln(x+\sqrt{1+x^2})+2x+C. \end{aligned}
这道题主要利用 ( ln ( x + 1 + x 2 ) ) = 1 1 + x 2 (\ln(x+\sqrt{1+x^2}))'=\cfrac{1}{\sqrt{1+x^2}} 进行化简求解

(34) ln x ( 1 + x 2 ) 3 2 d x ; \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}\mathrm{d}x;


ln x ( 1 + x 2 ) 3 2 = x = 1 u u ln u ( 1 + u 2 ) 3 2 d u = ln u d ( ( 1 + u 2 ) 1 2 ) = ln u 1 + u 2 + d u u 1 + u 2 = x ln x 1 + x 2 d x 1 + x 2 = x ln x 1 + x 2 ln ( x + 1 + x 2 ) + C . \begin{aligned} \displaystyle\int\cfrac{\ln x}{(1+x^2)^{\frac{3}{2}}}&\xlongequal{x=\cfrac{1}{u}}\displaystyle\int\cfrac{u\ln u}{(1+u^2)^{\frac{3}{2}}}\mathrm{d}u=-\displaystyle\int\ln u\mathrm{d}((1+u^2)^{-\frac{1}{2}})\\ &=-\cfrac{\ln u}{\sqrt{1+u^2}}+\displaystyle\int\cfrac{\mathrm{d}u}{u\sqrt{1+u^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{1+x^2}}\\ &=x\cfrac{\ln x}{\sqrt{1+x^2}}-\ln(x+\sqrt{1+x^2})+C. \end{aligned}
这道题利用倒数换元求解

(35) 1 x 2 arcsin x d x ; \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x;

  设 x = sin u ( π 2 < u < π 2 ) x=\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) ,则 1 x 2 = cos u , d x = cos u d u \sqrt{1-x^2}=\cos u,\mathrm{d}x=\cos u\mathrm{d}u ,于是
1 x 2 arcsin x d x = u cos 2 u d u = 1 2 u ( 1 + cos 2 u ) d u = 1 4 u d ( 2 u + sin 2 u ) = u ( 2 u + sin 2 u ) 4 1 4 ( 2 u + sin 2 u ) d u = u 2 4 + u 4 sin 2 u sin 2 u 4 + C = ( arcsin x ) 2 4 + x 2 1 x 2 arcsin x x 2 4 + C . \begin{aligned} \displaystyle\int\sqrt{1-x^2}\arcsin x\mathrm{d}x&=\displaystyle\int u\cos^2u\mathrm{d}u=\cfrac{1}{2}\displaystyle\int u(1+\cos2u)\mathrm{d}u\\ &=\cfrac{1}{4}\displaystyle\int u\mathrm{d}(2u+\sin2u)\\ &=\cfrac{u(2u+\sin2u)}{4}-\cfrac{1}{4}\displaystyle\int(2u+\sin2u)\mathrm{d}u\\ &=\cfrac{u^2}{4}+\cfrac{u}{4}\sin2u-\cfrac{\sin^2u}{4}+C\\ &=\cfrac{(\arcsin x)^2}{4}+\cfrac{x}{2}\sqrt{1-x^2}\arcsin x-\cfrac{x^2}{4}+C. \end{aligned}
这道题利用三角函数换元求解

(36) x 3 arccos x 1 x 2 d x ; \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x;

  设 x = cos u ( 0 < u < π ) x=\cos u\left(0<u<\pi\right) ,则 1 x 2 = sin u , d x = sin u d u \sqrt{1-x^2}=\sin u,\mathrm{d}x=-\sin u\mathrm{d}u ,于是
x 3 arccos x 1 x 2 d x = u cos 3 u d u = u d ( sin u 1 3 sin 3 u ) = u ( sin u 1 3 sin 3 u ) + ( sin u 1 3 sin 3 u ) d u = u ( sin u 1 3 sin 3 u ) 1 3 ( 2 + cos 2 u ) ( cos u ) = u ( sin u 1 3 sin 3 u ) 2 3 cos u 1 9 cos 3 u + C = 1 3 1 x 2 ( 2 + x 2 ) arccos x 1 9 ( 6 + x 2 ) + C . \begin{aligned} \displaystyle\int\cfrac{x^3\arccos x}{\sqrt{1-x^2}}\mathrm{d}x&=-\displaystyle\int u\cos^3u\mathrm{d}u=-\displaystyle\int u\mathrm{d}(\sin u-\cfrac{1}{3}\sin^3u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)+\displaystyle\int (\sin u-\cfrac{1}{3}\sin^3u)\mathrm{d}u\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{1}{3}\displaystyle\int(2+\cos^2u)\mathrm(\cos u)\\ &=-u(\sin u-\cfrac{1}{3}\sin^3u)-\cfrac{2}{3}\cos u-\cfrac{1}{9}\cos^3u+C\\ &=-\cfrac{1}{3}\sqrt{1-x^2}(2+x^2)\arccos x-\cfrac{1}{9}(6+x^2)+C. \end{aligned}
这道题主要用三角函数换元再分部积分求解

(38) d x sin 3 x cos x ; \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x};


d x sin 3 x cos x = cot x sec 2 x d ( cot x ) = u = cot x u ( 1 + 1 u 2 ) d u = u 2 2 ln u + C = cot 2 x 2 ln cot x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{\sin^3x\cos x}&=-\displaystyle\int\cot x\sec^2x\mathrm{d}(\cot x)\xlongequal{u=\cot x}-\displaystyle\int u\left(1+\cfrac{1}{u^2}\right)\mathrm{d}u\\ &=-\cfrac{u^2}{2}-\ln|u|+C=-\cfrac{\cot^2x}{2}-\ln|\cot x|+C. \end{aligned}
这道题主要利用了三角函数换元

(39) d x ( 2 + cos x ) sin x ; \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x};


d x ( 2 + cos x ) sin x = d ( cos x ) ( 2 + cos x ) ( cos 2 x + 1 ) = u = cos x d u ( 2 + u ) ( u 2 + 1 ) = [ 1 6 ( u 1 ) 1 2 ( u + 1 ) + 1 3 ( u + 2 ) ] d u = 1 6 ln u 1 1 2 ln u + 1 + 1 3 ln u + 2 + C = 1 6 ln ( 1 cos x ) 1 2 ln ( 1 + cos x ) + 1 3 ln ( 2 + cos x ) + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{(2+\cos x)\sin x}&=\displaystyle\int\cfrac{\mathrm{d}(\cos x)}{(2+\cos x)(\cos^2x+1)}\\ &\xlongequal{u=\cos x}\displaystyle\int\cfrac{\mathrm{d}u}{(2+u)(u^2+1)}\\ &=\displaystyle\int\left[\cfrac{1}{6(u-1)}-\cfrac{1}{2(u+1)}+\cfrac{1}{3(u+2)}\right]\mathrm{d}u\\ &=\cfrac{1}{6}\ln|u-1|-\cfrac{1}{2}\ln|u+1|+\cfrac{1}{3}\ln|u+2|+C\\ &=\cfrac{1}{6}\ln(1-\cos x)-\cfrac{1}{2}\ln(1+\cos x)+\cfrac{1}{3}\ln(2+\cos x)+C. \end{aligned}
这道题主要利用三角函数换元和因式分解积分

(40) sin x cos x sin x + cos x d x ; \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x;

解一
sin x cos x sin x + cos x d x = 1 2 ( sin x + cos x ) 2 1 2 sin x + cos x d x = 1 2 ( sin x + cos x ) d x 1 2 1 sin x + cos x d x = 1 2 ( cos x + sin x ) 1 2 1 sin x + cos x d x . \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\cfrac{1}{2}(\sin x+\cos x)^2-\cfrac{1}{2}}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}\displaystyle\int(\sin x+\cos x)\mathrm{d}x-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x\\ &=\cfrac{1}{2}(-\cos x+\sin x)-\cfrac{1}{2}\displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x. \end{aligned}
  令 u = tan x 2 u=\tan\cfrac{x}{2} ,则 sin x = 2 u 1 + u 2 , cos x = 1 u 2 1 + u 2 , d x = 2 1 + u 2 d u \sin x=\cfrac{2u}{1+u^2},\cos x=\cfrac{1-u^2}{1+u^2},\mathrm{d}x=\cfrac{2}{1+u^2}\mathrm{d}u ,故有
1 sin x + cos x d x = 2 2 u + 1 u 2 d u = 2 ( u 1 ) 2 ( 2 ) 2 d u = 1 2 2 u 1 2 d u + 1 2 2 u 1 + 2 d u = 1 2 ln u 1 + 2 u 1 2 + C . \begin{aligned} \displaystyle\int\cfrac{1}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{2}{2u+1-u^2}\mathrm{d}u=-\displaystyle\int\cfrac{2}{(u-1)^2-(\sqrt{2})^2}\mathrm{d}u\\ &=-\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1-\sqrt{2}}\mathrm{d}u+\cfrac{1}{\sqrt{2}}\displaystyle\int\cfrac{2}{u-1+\sqrt{2}}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\ln\left|\cfrac{u-1+\sqrt{2}}{u-1-\sqrt{2}}\right|+C'. \end{aligned}
  因此有
sin x cos x sin x + cos x d x = 1 2 ( sin x cos x ) 1 2 2 ln tan x 2 1 + 2 tan x 2 1 2 + C . \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x=\cfrac{1}{2}(\sin x-\cos x)-\cfrac{1}{2\sqrt{2}}\ln\left|\cfrac{\tan\cfrac{x}{2}-1+\sqrt{2}}{\tan\cfrac{x}{2}-1-\sqrt{2}}\right|+C.
解二
sin x cos x sin x + cos x d x = sin x cos x 2 sin ( x + π 4 ) d x = u = x + π 4 2 sin 2 u 1 2 2 sin u d u = 1 2 sin u d u 1 2 2 csc u d u = cos ( x + π 4 ) 2 1 2 2 ln csc ( x + π 4 ) cot ( x + π 4 ) + V . \begin{aligned} \displaystyle\int\cfrac{\sin x\cos x}{\sin x+\cos x}\mathrm{d}x&=\displaystyle\int\cfrac{\sin x\cos x}{\sqrt{2}\sin\left(x+\cfrac{\pi}{4}\right)}\mathrm{d}x\xlongequal{u=x+\cfrac{\pi}{4}}\displaystyle\int\cfrac{2\sin^2u-1}{2\sqrt{2}\sin u}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\displaystyle\int\sin u\mathrm{d}u-\cfrac{1}{2\sqrt{2}}\displaystyle\int\csc u\mathrm{d}u\\ &=-\cfrac{\cos\left(x+\cfrac{\pi}{4}\right)}{\sqrt{2}}-\cfrac{1}{2\sqrt{2}}\ln\left|\csc\left(x+\cfrac{\pi}{4}\right)-\cot\left(x+\cfrac{\pi}{4}\right)\right|+V. \end{aligned}
这道题主要利用万能公式或三角函数换元积分求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,参考的积分表及公式见附录

发布了14 篇原创文章 · 获赞 0 · 访问量 536

猜你喜欢

转载自blog.csdn.net/hnyy0301/article/details/104099516