第四章 不定积分(一)

在第二章中,我们讨论了如何求一个函数的导函数问题,本章将讨论它的反问题,即要寻找一个可导函数,使它的导函数等于已知函数。——高等数学同济版

习题4-1 不定积分的概念与性质

  本节主要介绍不定积分的基础定义与性质。

2.求下列不定积分:

(13) ( 2 e x + 3 x ) d x ; \displaystyle\int\left(2e^x+\cfrac{3}{x}\right)\mathrm{d}x;


( 2 e x + 3 x ) d x = 2 e x d x + 3 d x x = 2 e x + 3 ln x + C . \displaystyle\int\left(2e^x+\cfrac{3}{x}\right)\mathrm{d}x=2\displaystyle\int e^x\mathrm{d}x+3\displaystyle\int\cfrac{\mathrm{d}x}{x}=2e^x+3\ln|x|+C.
这道题在积分时容易忘记加上绝对值

习题4-2 换元积分法

本节把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元积分法,简称换元法。

  本节主要介绍了两类换元积分法。

2.求下列不定积分(其中 a a b b ω \omega φ \varphi 均为常数)

(16) d x x ln x ln ln x ; \displaystyle\int\cfrac{\mathrm{d}x}{x\ln x\ln\ln x};


d x x ln x ln ln x = d ( ln x ) ln x ln ln x d ( ln ln x ) ln ln x = ln ln ln x + C . \displaystyle\int\cfrac{\mathrm{d}x}{x\ln x\ln\ln x}=\displaystyle\int\cfrac{\mathrm{d}(\ln x)}{\ln x\ln\ln x}\displaystyle\int\cfrac{\mathrm{d}(\ln\ln x)}{\ln\ln x}=\ln|\ln\ln x|+C.
这道题表明在题目中包含 x > 0 x>0 这个条件时, d x x = ln x \displaystyle\int\cfrac{\mathrm{d}x}{x}=\ln x

(21) 1 + ln x ( x ln x ) 2 d x ; \displaystyle\int\cfrac{1+\ln x}{(x\ln x)^2}\mathrm{d}x;


1 + ln x ( x ln x ) 2 d x = d ( x ln x ) ( x ln x ) 2 = 1 x ln x + C . \displaystyle\int\cfrac{1+\ln x}{(x\ln x)^2}\mathrm{d}x=\displaystyle\int\cfrac{\mathrm{d}(x\ln x)}{(x\ln x)^2}=-\cfrac{1}{x\ln x}+C.
这道题主要利用 ( 1 + ln x ) d x = d ( x ln x ) (1+\ln x)\mathrm{d}x=\mathrm{d}(x\ln x) 求解

(35) x x 2 x 2 d x ; \displaystyle\int\cfrac{x}{x^2-x-2}\mathrm{d}x;


x x 2 x 2 d x = x ( x 2 ) ( x + 1 ) d x = 1 3 ( 2 x 2 + 1 x + 1 ) d x = 2 3 ln x 2 + 1 3 ln x + 1 + C . \begin{aligned} \displaystyle\int\cfrac{x}{x^2-x-2}\mathrm{d}x&=\displaystyle\int\cfrac{x}{(x-2)(x+1)}\mathrm{d}x=\displaystyle\int\cfrac{1}{3}\left(\cfrac{2}{x-2}+\cfrac{1}{x+1}\right)\mathrm{d}x\\ &=\cfrac{2}{3}\ln|x-2|+\cfrac{1}{3}\ln|x+1|+C. \end{aligned}
这道题利用分解因式并进行凑整进行求导

(36) x 2 d x a 2 x 2 ( a > 0 ) ; \displaystyle\int\cfrac{x^2\mathrm{d}x}{\sqrt{a^2-x^2}}(a>0);

  设 x = a sin u ( π 2 < u < π 2 ) x=a\sin u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) ,则 a 2 x 2 = a cos u , d x = a cos u d u \sqrt{a^2-x^2}=a\cos u,\mathrm{d}x=a\cos u\mathrm{d}u ,于是
x 2 d x a 2 x 2 = a 2 sin 2 u d u = a 2 1 cos 2 u 2 d u = a 2 2 ( u sin 2 u 2 ) + C = a 2 2 arcsin x a x a 2 x 2 2 + C . \begin{aligned} \displaystyle\int\cfrac{x^2\mathrm{d}x}{\sqrt{a^2-x^2}}&=\displaystyle\int a^2\sin^2u\mathrm{d}u=a^2\displaystyle\int\cfrac{1-\cos2u}{2}\mathrm{d}u\\ &=\cfrac{a^2}{2}\left(u-\cfrac{\sin2u}{2}\right)+C\\ &=\cfrac{a^2}{2}\arcsin\cfrac{x}{a}-\cfrac{x\sqrt{a^2-x^2}}{2}+C. \end{aligned}
这道题在进行换元时,为了保证只含根号的式子不小于0,对于 u u 进行了大小限制

(37) d x x x 2 1 ; \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}};

  当 x > 1 x>1 时,
d x x x 2 1 = x = 1 t d t 1 t 2 = arcsin t + C = arcsin 1 x + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}&\xlongequal{x=\cfrac{1}{t}}-\displaystyle\int\cfrac{\mathrm{d}t}{\sqrt{1-t^2}}=-\arcsin t+C\\ &=-\arcsin\cfrac{1}{x}+C. \end{aligned}
  当 x < 1 x<-1 时,
d x x x 2 1 = x = 1 t d t 1 t 2 = arcsin t + C = arcsin 1 x + C . \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}\xlongequal{x=\cfrac{1}{t}}\displaystyle\int\cfrac{\mathrm{d}t}{\sqrt{1-t^2}}=\arcsin t+C=\arcsin\cfrac{1}{x}+C.
  故在 ( , 1 ) (-\infty,-1) ( 1 , + ) (1,+\infty) 内,有
d x x x 2 1 = arcsin 1 x + C \displaystyle\int\cfrac{\mathrm{d}x}{x\sqrt{x^2-1}}=-\arcsin\cfrac{1}{|x|}+C
这道题表明对于不连续的不定积分可以进行分段求解

(38) d x ( x 2 + 1 ) 3 ; \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{(x^2+1)^3}};

  设 x = tan u ( π 2 < u < π 2 ) x=\tan u\left(-\cfrac{\pi}{2}<u<\cfrac{\pi}{2}\right) ,则 x 2 + 1 = sec u , d x = sec 2 u d u \sqrt{x^2+1}=\sec u,\mathrm{d}x=\sec^2u\mathrm{d}u ,于是
d x ( x 2 + 1 ) 3 = cos u d u = sin u + C = x 1 + x 2 + C . \displaystyle\int\cfrac{\mathrm{d}x}{\sqrt{(x^2+1)^3}}=\displaystyle\int\cos u\mathrm{d}u=\sin u+C=\cfrac{x}{\sqrt{1+x^2}}+C.
这道题说明对于可以取任意值的变量可以替换成 tan x \tan x 求解

(39) x 2 9 x d x ; \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x;

  当 x > 3 x>3 时,令 x = 3 sec u ( 0 u < π 2 ) , x=3\sec u\left(0\leqslant u<\cfrac{\pi}{2}\right),
x 2 9 x d x = 3 tan 2 u d u = 3 ( sec 2 u 1 ) d u = 3 tan u 3 u + C = x 2 9 3 arccos 3 x + C . \begin{aligned} \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x&=\displaystyle\int3\tan^2u\mathrm{d}u=3\displaystyle\int(\sec^2u-1)\mathrm{d}u=3\tan u-3u+C\\ &=\sqrt{x^2-9}-3\arccos\cfrac{3}{x}+C. \end{aligned}
  当 x < 3 x<-3 时,令 x = 3 sec u ( π 2 < u π ) , x=3\sec u\left(\cfrac{\pi}{2}< u\leqslant\pi\right),
x 2 9 x d x = 3 tan 2 u d u = 3 ( sec 2 u 1 ) d u = 3 tan u + 3 u + C = x 2 9 + 3 arccos 3 x + C = x 2 9 3 arccos 3 x + C + 3 π . \begin{aligned} \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x&=-\displaystyle\int3\tan^2u\mathrm{d}u=-3\displaystyle\int(\sec^2u-1)\mathrm{d}u=-3\tan u+3u+C'\\ &=\sqrt{x^2-9}+3\arccos\cfrac{3}{x}+C'\\ &=\sqrt{x^2-9}-3\arccos\cfrac{3}{-x}+C+3\pi. \end{aligned}
  故可以统一写作 x 2 9 x d x = x 2 9 3 arccos 3 x + C \displaystyle\int\cfrac{\sqrt{x^2-9}}{x}\mathrm{d}x=\sqrt{x^2-9}-3\arccos\cfrac{3}{|x|}+C 这道题表明对于 x > 1 x>1 x x 变量可以使用 sec u \sec u 来换元

(41) d x 1 + 1 x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{1+\sqrt{1-x^2}};

  令 x = sin t ( π 2 < t < π 2 ) x=\sin t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) ,则 1 x 2 = cos t , d x = cos t d t \sqrt{1-x^2}=\cos t,\mathrm{d}x=\cos t\mathrm{d}t ,于是
d x 1 + 1 x 2 = cos t 1 + cos t d t = 2 cos 2 t 2 1 2 cos 2 t 2 = t tan t 2 + C = t sin t 1 + cos t + C = arcsin x x 1 + 1 x 2 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{1+\sqrt{1-x^2}}&=\displaystyle\int\cfrac{\cos t}{1+\cos t}\mathrm{d}t=\displaystyle\int\cfrac{2\cos^2\cfrac{t}{2}-1}{2\cos^2\cfrac{t}{2}}=t-\tan\cfrac{t}{2}+C\\ &=t-\cfrac{\sin t}{1+\cos t}+C=\arcsin x-\cfrac{x}{1+\sqrt{1-x^2}}+C. \end{aligned}
这道题表明当 x ( 1 , 1 ) x\in(-1,1) 时,可以用 sin x \sin x 替换

(42) d x x + 1 x 2 ; \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}};

  设 x = sin t ( π 4 < t < π 2 ) x=\sin t\left(-\cfrac{\pi}{4}<t<\cfrac{\pi}{2}\right) ,则 1 x 2 = cos t , d x = cos t t \sqrt{1-x^2}=\cos t,\mathrm{d}x=\cos t\mathrm{t} ,于是
d x x + 1 x 2 = cos t d t sin t + cos t . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t}.
  记 I 1 = cos t d t sin t + cos t , I 2 = sin t d t sin t + cos t I_1=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t},I_2=\displaystyle\int\cfrac{\sin t\mathrm{d}t}{\sin t+\cos t} ,利用
I 1 + I 2 = d t = t + C , I 1 I 2 = cos t sin t sin t + cos t d t = d ( cos t + sin t ) sin t + cos t = ln sin t + cos t + C . \begin{aligned} I_1+I_2&=\displaystyle\int\mathrm{d}t=t+C,\\ I_1-I_2&=\displaystyle\int\cfrac{\cos t-\sin t}{\sin t+\cos t}\mathrm{d}t=\displaystyle\int\cfrac{\mathrm{d}(\cos t+\sin t)}{\sin t+\cos t}=\ln|\sin t+\cos t|+C. \end{aligned}
  求得
I 1 = cos t d t sin t + cos t = 1 2 ( t + ln sin t + cos t ) + C , I_1=\displaystyle\int\cfrac{\cos t\mathrm{d}t}{\sin t+\cos t}=\cfrac{1}{2}(t+\ln|\sin t+\cos t|)+C,
  即求得在 ( 2 2 , 1 ) (-\cfrac{\sqrt{2}}{2},1) 内,有
d x x + 1 x 2 = 1 2 ( arcsin x + ln x + 1 x 2 ) + C . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\cfrac{1}{2}(\arcsin x+\ln|x+\sqrt{1-x^2}|)+C.
  再设 x = sin t ( π 2 < t < π 4 ) x=\sin t\left(-\cfrac{\pi}{2}<t<-\cfrac{\pi}{4}\right) ,重复上面过程,可得在 ( 1 , 2 2 ) (-1,-\cfrac{\sqrt{2}}{2}) 内有与上面不定积分形式相同的结果。从而在 ( 1 , 2 2 ) (-1,-\cfrac{\sqrt{2}}{2}) ( 2 2 , 1 ) (-\cfrac{\sqrt{2}}{2},1) 内,有
d x x + 1 x 2 = 1 2 ( arcsin x + ln x + 1 x 2 ) + C . \displaystyle\int\cfrac{\mathrm{d}x}{x+\sqrt{1-x^2}}=\cfrac{1}{2}(\arcsin x+\ln|x+\sqrt{1-x^2}|)+C.
这道题主要是利用自变量的区间来进行分段确定不定积分的结果

(43) x 3 + 1 ( x 2 + 1 ) 2 d x ; \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x;

  设 x = tan t ( π 2 < t < π 2 ) x=\tan t\left(-\cfrac{\pi}{2}<t<\cfrac{\pi}{2}\right) ,则 x 2 + 1 = sec 2 t , d x = sec 2 t d t x^2+1=\sec^2 t,\mathrm{d}x=\sec^2t\mathrm{d}t ,于是
x 3 + 1 ( x 2 + 1 ) 2 d x = tan 3 t + 1 sec 2 t d t = cos 2 t 1 cos t d ( cos t ) + 1 + cos 2 t 2 d t = 1 2 cos 2 t ln cos t + t 2 + 1 4 sin 2 t + C = 1 2 cos 2 t ln cos t + t 2 + 1 2 sin t cos t + C \begin{aligned} \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{\tan^3t+1}{\sec^2t}\mathrm{d}t\\ &=\displaystyle\int\cfrac{\cos^2t-1}{\cos t}\mathrm{d}(\cos t)+\displaystyle\int\cfrac{1+\cos2t}{2}\mathrm{d}t\\ &=\cfrac{1}{2}\cos^2t-\ln\cos t+\cfrac{t}{2}+\cfrac{1}{4}\sin2t+C\\ &=\cfrac{1}{2}\cos^2t-\ln\cos t+\cfrac{t}{2}+\cfrac{1}{2}\sin t\cos t+C \end{aligned}
  按 tan t = x \tan t=x 作辅助三角形,便有
在这里插入图片描述
cos t = 1 1 + x 2 , sin t = x 1 + x 2 . \cos t=\cfrac{1}{\sqrt{1+x^2}},\quad\sin t=\cfrac{x}{\sqrt{1+x^2}}.
  于是
x 3 + 1 ( x 2 + 1 ) 2 d x = 1 + x 2 ( 1 + x 2 ) + 1 2 ln ( 1 + x 2 ) + 1 2 arctan x + C . \displaystyle\int\cfrac{x^3+1}{(x^2+1)^2}\mathrm{d}x=\cfrac{1+x}{2(1+x^2)}+\cfrac{1}{2}\ln(1+x^2)+\cfrac{1}{2}\arctan x+C.
这道题表明有时可以借助辅助三角形求解

习题4-3 分部积分法

  本节主要介绍了分部积分法。

求下列不定积分:

18. ln 3 x x 2 d x \displaystyle\int\cfrac{\ln^3x}{x^2}\mathrm{d}x


ln 3 x x 2 d x = ln 3 x d ( 1 x ) = ln 3 x x 3 ln 2 x d ( 1 x ) = ln 3 x x 3 [ ln 2 x x + 2 ln x d ( 1 x ) ] = ln 3 x + 3 ln 2 x + 6 ln x + 6 x + C . \begin{aligned} \displaystyle\int\cfrac{\ln^3x}{x^2}\mathrm{d}x&=\displaystyle\int-\ln^3x\mathrm{d}\left(\cfrac{1}{x}\right)=-\cfrac{\ln^3x}{x}-3\displaystyle\int\ln^2x\mathrm{d}\left(\cfrac{1}{x}\right)\\ &=-\cfrac{\ln^3x}{x}-3\left[\cfrac{\ln^2x}{x}+2\displaystyle\int\ln x\mathrm{d}\left(\cfrac{1}{x}\right)\right]\\ &=-\cfrac{\ln^3x+3\ln^2x+6\ln x+6}{x}+C. \end{aligned}
这道题说明可以采用不同的分部方式来进行计算

习题4-4 有理函数的积分

  本节主要介绍了有理函数的积分及可化为有理函数的积分。

求下列不定积分:

5. 3 x 3 + 1 d x . \displaystyle\int\cfrac{3}{x^3+1}\mathrm{d}x.


3 x 3 + 1 d x = 3 ( 1 + x ) ( x 2 x + 1 ) d x = ( 1 x + 1 + 2 x x 2 x + 1 ) d x = ln 1 + x 1 2 ( x 2 x + 1 ) x 2 x + 1 d x + 3 2 1 x 2 x + 1 d x = ln 1 + x 1 2 ln ( x 2 x + 1 ) + 3 1 ( 2 x 1 3 ) 2 + 1 d ( 2 x 1 3 ) = ln 1 + x 1 2 ln ( x 2 x + 1 ) + 3 arctan 2 x 1 3 + C . \begin{aligned} \displaystyle\int\cfrac{3}{x^3+1}\mathrm{d}x&=\displaystyle\int\cfrac{3}{(1+x)(x^2-x+1)}\mathrm{d}x=\displaystyle\int\left(\cfrac{1}{x+1}+\cfrac{2-x}{x^2-x+1}\right)\mathrm{d}x\\ &=\ln|1+x|-\cfrac{1}{2}\displaystyle\int\cfrac{(x^2-x+1)'}{x^2-x+1}\mathrm{d}x+\cfrac{3}{2}\displaystyle\int\cfrac{1}{x^2-x+1}\mathrm{d}x\\ &=\ln|1+x|-\cfrac{1}{2}\ln(x^2-x+1)+\sqrt{3}\displaystyle\int\cfrac{1}{\left(\cfrac{2x-1}{\sqrt{3}}\right)^2+1}\mathrm{d}\left(\cfrac{2x-1}{\sqrt{3}}\right)\\ &=\ln|1+x|-\cfrac{1}{2}\ln(x^2-x+1)+\sqrt{3}\arctan\cfrac{2x-1}{\sqrt{3}}+C. \end{aligned}
这道题先使用待定系数确定分解后的因式的分子上的系数,再对不可分解的因式进行拆分,分母化为平方和并进行积分

12. ( x + 1 ) 2 ( x 2 + 1 ) 2 d x . \displaystyle\int\cfrac{(x+1)^2}{(x^2+1)^2}\mathrm{d}x.


( x + 1 ) 2 ( x 2 + 1 ) 2 d x = x 2 + 1 ( x + 1 ) 2 d x + 2 x d x ( x + 1 ) 2 = arctan x 1 x 2 + 1 + C . \begin{aligned} \displaystyle\int\cfrac{(x+1)^2}{(x^2+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{x^2+1}{(x+1)^2}\mathrm{d}x+\displaystyle\int\cfrac{2x\mathrm{d}x}{(x+1)^2}\\ &=\arctan x-\cfrac{1}{x^2+1}+C. \end{aligned}
这道题需要把分子上的式子拆分成易于积分的几部分再进行运算

13. x 2 2 ( x 2 + x + 1 ) 2 d x \displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x


x 2 2 ( x 2 + x + 1 ) 2 d x = [ 1 x 2 + x + 1 + x 1 ( x 2 + x + 1 ) 2 ] d x = 1 x 2 + x + 1 d x + 1 2 d ( x 2 + x + 1 ) x 2 + x + 1 3 2 1 ( x 2 + x + 1 ) 2 d x . \begin{aligned} &\displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x=\displaystyle\int\left[-\cfrac{1}{x^2+x+1}+\cfrac{x-1}{(x^2+x+1)^2}\right]\mathrm{d}x\\ &=-\displaystyle\int\cfrac{1}{x^2+x+1}\mathrm{d}x+\cfrac{1}{2}\displaystyle\int\cfrac{\mathrm{d}(x^2+x+1)}{x^2+x+1}-\cfrac{3}{2}\displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x. \end{aligned}
  令 u = x + 1 2 u=x+\cfrac{1}{2} ,并记 a = 3 2 a=\cfrac{\sqrt{3}}{2} ,则
1 ( x 2 + x + 1 ) 2 d x = 1 ( u 2 + a 2 ) 2 d u = 1 2 a 2 [ u u 2 + a 2 + 1 u 2 + a 2 d u ] = u 2 a 2 ( u 2 + a 2 ) + 1 2 a 2 1 u 2 + a 2 d u . \begin{aligned} \displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x&=\displaystyle\int\cfrac{1}{(u^2+a^2)^2}\mathrm{d}u=\cfrac{1}{2a^2}\left[\cfrac{u}{u^2+a^2}+\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\right]\\ &=\cfrac{u}{2a^2(u^2+a^2)}+\cfrac{1}{2a^2}\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u. \end{aligned}
  由此得
1 x 2 + x + 1 d x + 3 2 1 ( x 2 + x + 1 ) 2 d x = 1 u 2 + a 2 d u + 3 2 [ u 2 a 2 ( u 2 + a 2 ) + 1 2 a 2 1 u 2 + a 2 d u ] = 3 u 4 a 2 ( u 2 + a 2 ) + ( 3 4 a 2 + 1 ) 1 u 2 + a 2 d u = 3 u 4 a 2 ( u 2 + a 2 ) + 1 a ( 3 4 a 2 + 1 ) arctan u a + C 1 = 2 x + 1 2 ( x 2 + x + 1 ) + 4 3 arctan 2 x + 1 3 + C 1 . \begin{aligned} &\displaystyle\int\cfrac{1}{x^2+x+1}\mathrm{d}x+\cfrac{3}{2}\displaystyle\int\cfrac{1}{(x^2+x+1)^2}\mathrm{d}x\\ =&\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u+\cfrac{3}{2}\left[\cfrac{u}{2a^2(u^2+a^2)}+\cfrac{1}{2a^2}\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\right]\\ =&\cfrac{3u}{4a^2(u^2+a^2)}+\left(\cfrac{3}{4a^2}+1\right)\displaystyle\int\cfrac{1}{u^2+a^2}\mathrm{d}u\\ =&\cfrac{3u}{4a^2(u^2+a^2)}+\cfrac{1}{a}\left(\cfrac{3}{4a^2}+1\right)\arctan\cfrac{u}{a}+C_1\\ =&\cfrac{2x+1}{2(x^2+x+1)}+\cfrac{4}{\sqrt{3}}\arctan\cfrac{2x+1}{\sqrt{3}}+C_1. \end{aligned}
  因此有
x 2 2 ( x 2 + x + 1 ) 2 d x = 1 2 ( x 2 + x + 1 ) 2 x + 1 2 ( x 2 + x + 1 ) 4 3 arctan 2 x + 1 3 + C . \begin{aligned} \displaystyle\int\cfrac{-x^2-2}{(x^2+x+1)^2}\mathrm{d}x=&-\cfrac{1}{2(x^2+x+1)}-\cfrac{2x+1}{2(x^2+x+1)}-\cfrac{4}{\sqrt{3}}\arctan\cfrac{2x+1}{\sqrt{3}}+C. \end{aligned}
这道题通过逐步代换得到结果

15. d x 3 + cos x . \displaystyle\int\cfrac{\mathrm{d}x}{3+\cos x}.

  令 u = tan x 2 u=\tan\cfrac{x}{2} ,则
d x 3 + cos x = 1 3 + 1 u 2 1 + u 2 2 1 + u 2 d u = 1 2 + u 2 d u = 1 2 arctan u 2 + C = 1 2 arctan tan x 2 2 + C . \begin{aligned} \displaystyle\int\cfrac{\mathrm{d}x}{3+\cos x}&=\displaystyle\int\cfrac{1}{3+\cfrac{1-u^2}{1+u^2}}\cdot\cfrac{2}{1+u^2}\mathrm{d}u=\displaystyle\int\cfrac{1}{2+u^2}\mathrm{d}u\\ &=\cfrac{1}{\sqrt{2}}\arctan\cfrac{u}{\sqrt{2}}+C=\cfrac{1}{\sqrt{2}}\arctan\cfrac{\tan\cfrac{x}{2}}{\sqrt{2}}+C. \end{aligned}
当式子中有三角函数时,可以用正切值代替

习题4-5 积分表的使用

  本节主要介绍了如何查阅积分表及其相关变形。(本节不在考纲中

写在最后

  总习题四难点比较多,综合性强,在下一篇《第四章 不定积分(二)》中详述。
  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。
  另,参考的积分表及公式见附录

发布了14 篇原创文章 · 获赞 0 · 访问量 537

猜你喜欢

转载自blog.csdn.net/hnyy0301/article/details/104072787