2021考研数学 高等数学第四章 不定积分


1. 背景

前段时间复习完了高数第四章的内容,我参考《复习全书·基础篇》和老师讲课的内容对这一章的知识点进行了整理,形成了这篇笔记,方便在移动设备上进行访问和后续的补充修改。

1. 不定积分的概念与性质

1.1. 不定积分

  • 定义

f ( x ) f(x) 的原函数的全体成为 f ( x ) f(x) 的不定积分,记为 f ( x ) d x \int f(x)dx .

如果 F ( x ) F(x) f ( x ) f(x) 的一个原函数,则有

f ( x ) d x = F ( x ) + C (4.1) \int {f(x)}dx = F(x) + C \tag{4.1}

其中 C C 为任意常数

1.2. 原函数存在定理

  • 证明存在的定理

f ( x ) f(x) 在区间 I I 上连续,则 f ( x ) f(x) 在区间 I I 上一定存在原函数

  • 证明不存在的定理

f ( x ) f(x) 在区间 I I 上有第一类间断点,则 f ( x ) f(x) 在区间 I I 上没有原函数

1.3. 不定积分的性质

( f ( x ) d x ) = f ( x ) , d ( f ( x ) d x ) = f ( x ) d x (4.2) (\int {f(x)}dx)' = f(x), d (\int {f(x)}dx) = f(x)dx \tag{4.2}

f ( x ) d x = f ( x ) + C , d f ( x ) d x = f ( x ) + C (4.3) \int {f'(x)}dx = f(x) + C, \int d{f(x)}dx = f(x) + C \tag{4.3}

f ( x ) ± g ( x ) d x = f ( x ) d x ± g ( x ) d x (4.4) \int {f(x) \pm g(x)}dx = \int {f(x)}dx \pm \int {g(x)}dx \tag{4.4}

k f ( x ) d x = k f ( x ) d x , ( k = C ) (4.5) \int k{f(x)}dx = k \int {f(x)}dx, (k = C) \tag{4.5}


2. 不定积分基本公式

0 d x = C (4.6) \int {0}dx = C \tag{4.6}

x a d x = 1 a + 1 x α + 1 + C , ( α 1 ) (4.7) \int {x^a}dx = \frac{1}{a+1}x^{\alpha + 1} + C, (\alpha \ne -1) \tag{4.7}

1 x d x = ln x + C (4.8) \int \frac{1}{x} dx = \ln|x| + C \tag{4.8}

a x d x = a x ln a + C , ( a > 0 , a 1 ) (4.9) \int a^x dx = \frac{a^x}{\ln a} + C, (a > 0, a \ne 1) \tag{4.9}

e x d x = e x + C (4.10) \int e^x dx = e^x + C \tag{4.10}

sin x d x = cos ( x ) + C (4.11) \int \sin x dx = - \cos(x) + C \tag{4.11}

cos ( x ) d x = sin ( x ) + C (4.12) \int \cos(x) dx = \sin(x) + C \tag{4.12}

sec 2 x d x = tan ( x ) + C (4.13) \int \sec^2 x dx = \tan(x) + C \tag{4.13}

csc 2 x d x = ctg x + C (4.14) \int \csc^2 x dx = -\ctg x + C \tag{4.14}

sec x tan x d x = sec x + C (4.15) \int \sec x \tan x dx = \sec x + C \tag{4.15}

csc x ctg x d x = csc x + C (4.16) \int \csc x \ctg x dx = - \csc x + C \tag{4.16}


1 1 x 2 d x = arcsin x + C (4.17) \int \frac{1}{\sqrt{1 - x^2}}dx = \arcsin x + C \tag{4.17}

  • 证明4.17: 凑微分法

1 1 x 2 d x = d x a 1 ( x a ) 2 d x = d ( x a ) 1 ( x a ) 2 d x = arcsin x + C { \begin{aligned} \int \frac{1}{\sqrt{1 - x^2}}dx &= \int \dfrac{dx}{a \sqrt{1 - (\dfrac{x}{a}})^2} dx \\ &= \int \frac{d (\dfrac{x}{a})}{\sqrt{1 - (\dfrac{x}{a}})^2} dx \\ &= \arcsin x + C \end{aligned} }


1 1 + x 2 d x = arctan x + C (4.18) \int \frac{1}{{1 + x^2}}dx = \arctan x + C \tag{4.18}

1 a 2 + x 2 d x = 1 a arctan x a + C (4.19) \int \frac{1}{{a^2 + x^2}}dx = \frac{1}{a} \arctan \frac{x}{a} + C \tag{4.19}

1 x 2 a 2 d x = 1 2 a ln x a x + a + C (4.20) \int \frac{1}{x^2 - a^2} dx = \frac{1}{2a} \ln|\frac{x-a}{x+a}| + C \tag{4.20}


1 x 2 + a 2 d x = ln ( x + x 2 + a 2 ) + C (4.21) \int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln (x + \sqrt{x^2 + a^2}) + C \tag{4.21}

  • 证明4.21: 第二类换元法,令 x = a tan t x = a\tan t

1 x 2 + a 2 d x = a sec 2 t a sec t d t = sec t d t = ln sec t + tan t + C = ln x + x 2 + a 2 ln a + C = ln x + x 2 + a 2 + C { \begin{aligned} \int \frac{1}{\sqrt{x^2 + a^2}} dx &= \int \frac{a\sec^2 t}{a \sec t} dt = \int \sec t dt \\ &= \ln |\sec t + \tan t| + C \\ &= \ln |x + \sqrt{x^2 + a^2}| - \ln a+ C\\ &= \ln |x + \sqrt{x^2 + a^2}| + C \end{aligned} }


1 x 2 a 2 d x = ln x + x 2 a 2 + C (4.22) \int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln |x + \sqrt{x^2 - a^2}| + C \tag{4.22}

  • 证明4.22: 第二类换元法,令 x = a sec t x = a\sec t

1 x 2 a 2 d x = a sec t tan t a tan t d t = sec t d t = ln sec t + tan t + C = ln x + x 2 a 2 ln a + C = ln x + x 2 a 2 + C { \begin{aligned} \int \frac{1}{\sqrt{x^2 - a^2}} dx &= \int \frac{a\sec t \tan t}{a \tan t} dt = \int \sec t dt \\ &= \ln |\sec t + \tan t| + C \\ &= \ln |x + \sqrt{x^2 - a^2}| - \ln a+ C\\ &= \ln |x + \sqrt{x^2 - a^2}| + C \end{aligned} }


sec x d x = ln sec x + tan x + C (4.23) \int {\sec x} dx = \ln |\sec x + \tan x| + C \tag{4.23}

  • 证明4.23: 凑微分法

sec x d x = sec x [ sec x + tan x ] sec x + tan x d x = sec 2 x + sec x tan x sec x + tan x d x = d ( sec x + tan x ) sec x + tan x = ln sec x + tan x + C { \begin{aligned} \int {\sec x} dx &= \int \frac{\sec x[\sec x + \tan x]}{\sec x + \tan x} dx &=& \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} dx \\ &= \int \frac{d(\sec x + \tan x)}{\sec x + \tan x}\\ &= \ln |\sec x + \tan x| + C \end{aligned} }

csc x d x = ln csc x + ctg x + C (4.24) \int {\csc x} dx = -\ln |\csc x + \ctg x| + C \tag{4.24}

  • 证明4.24: 凑微分法

csc x d x = csc x [ csc x + ctg x ] csc x + ctg x d x = csc 2 x + csc x ctg x csc x + ctg x d x = d ( csc x + ctg x ) csc x + ctg x = ln csc x + ctg x + C { \begin{aligned} \int {\csc x} dx &= \int \frac{\csc x[\csc x + \ctg x]}{\csc x + \ctg x} dx &=& \int \frac{\csc^2 x + \csc x \ctg x}{\csc x + \ctg x} dx \\ &= \int \frac{d(\csc x + \ctg x)}{\csc x + \ctg x}\\ &= \ln |\csc x + \ctg x| + C \end{aligned} }


3. 三种主要积分法

3.1. 第一换元积分法

  • 定理 f ( u ) d u = F ( u ) + C \int f(u) du = F(u) + C , u = φ ( x ) u = \varphi(x) 存在连续导数,则

f [ φ ( x ) ] φ ( x ) d x = f [ φ ( x ) ] d φ x = F ( φ ( x ) ) + C (4.25) \int f[\varphi(x)]\varphi '(x) dx = \int f[\varphi(x)] d\varphi x = F(\varphi(x)) + C \tag{4.25}

3.2. 第二换元积分法

  • 定理 x = φ ( x ) x = \varphi (x) 是单调的、可导的函数,并且 φ ( t ) 0 \varphi'(t) \ne 0 ,又

f [ φ ( t ) ] φ ( t ) d t = F ( φ ( t ) ) + C \int f[\varphi(t)]\varphi '(t) dt = F(\varphi(t)) + C

f ( x ) d x = f [ φ ( t ) ] φ ( t ) d t = F ( φ ( t ) ) + C = F [ φ 1 ( x ) ] + C (4.26) \int {f(x)} dx = \int f[\varphi(t)]\varphi '(t) dt = F(\varphi(t)) + C = F[\varphi^{-1}(x)] + C \tag{4.26}

:式中对 φ ( t ) \varphi (t) 求导的部分容易被遗漏

  • 常用的三种变量代换
  1. 被积函数含有 a 2 x 2 \sqrt{a^2 - x^2} ,令 x = a sin x x = a\sin x (或 a cos x a \cos x ).

  2. 被积函数含有 x 2 + a 2 \sqrt{x^2 + a^2} ,令 x = a tan x x = a\tan x .

  3. 被积函数含有 x 2 a 2 \sqrt{x^2 - a^2} ,令 x = a sec x x = a\sec x .

3.3. 分部积分法

  • 分部积分公式

u d v = u v v d u (4.27) \int u dv = uv - \int v du \tag{4.27}

  • 分部积分法中 u , v u,v 的选取
  1. 把多项式以外的函数凑进微分号,因为对多项式求导若干次后能够将其化为常数项

p n ( x ) e α x d x , p n ( x ) sin α x d x , p n ( x ) cos α x d x \int p_n(x)e^{\alpha x} dx, \int p_n(x)\sin \alpha x dx, \int p_n(x)\cos \alpha x dx

  1. 把指数函数或三角函数凑进微分号都可以,但把指数凑进去更简单

e α x sin β x d x , e α x cos β x \int e^{\alpha x}\sin \beta x dx, \int e^{\alpha x}\cos \beta x

  1. 把多项式凑进微分号,多项式以外的函数方便求导,不方便积分

p n ( x ) ln x d x , p n ( x ) arctan x d x , p n ( x ) arcsin x d x \int p_n(x)\ln x dx, \int p_n(x)\arctan x dx, \int p_n(x)\arcsin x dx


4. 三类常见可积函数积分

4.1. 有理函数

  • 有理函数积分 R ( x ) d x \int R(x) dx
  1. 一般方法(部分分式法)
  2. 特殊方法(加项减项拆或凑微分降幂)

4.2. 三角有理式积分

  • 三角有理式积分 R ( sin x , cos x ) d x \int R(\sin x, \cos x) dx
  1. 一般方法(万能代换)令 tan x 2 = t \tan \dfrac{x}{2} = t .

R ( sin x , cos x ) d x = R ( 2 t 1 + t 2 , 1 t 2 1 + t 2 ) d t (4.28) \int R(\sin x, \cos x) dx = \int R(\frac{2t}{1 + t^2}, \frac{1 - t^2}{1 + t^2}) dt \tag{4.28}

  1. 特殊方法(三角变形,换元,分解)
  • 几种常用的换元法
  1. R ( sin x , cos x ) = R ( sin x , cos x ) R(- \sin x, \cos x) = - R(\sin x, \cos x) ,则令 u = cos x u = \cos x ,或凑 d cos x d\cos x .
  2. R ( sin x , cos x ) = R ( sin x , cos x ) R(\sin x, - \cos x) = - R(\sin x, \cos x) ,则令 u = sin x u = \sin x ,或凑 d sin x d\sin x .
  3. R ( sin x , cos x ) = R ( sin x , cos x ) R(- \sin x, - \cos x) = R(\sin x, \cos x) ,则令 u = tan x u = \tan x ,或凑 d tan x d\tan x .

4.3. 简单无理函数积分

  • 简单无理函数积分 $
    \int R(x, \sqrt[n]{\dfrac{ax + b}{cx + d}}) dx$

a x + b c x + d n = t \sqrt[n]{\dfrac{ax + b}{cx + d}} = t ,将其转化为有理函数积分进行计算


5. 总结

  • 两个概念

    • 原函数
    • 不定积分
  • 三种方法

    • 第一类换元法
    • 第二类换元法
    • 分部积分法
  • 三种形式

    • 有理函数
    • 三角有理式
    • 简单无理函数

猜你喜欢

转载自blog.csdn.net/qq_41729780/article/details/107048923
今日推荐