具体数学之二项式系数2

又是一大堆公式来袭~~

二项级数的部分和另一种有意思的关系式子:
k m ( m + r k ) x k y m k = k m ( r k ) ( x ) k ( x + y ) m k , m \sum_{k \leqslant m} \left( \begin{array}{c}{m+r} \\ {k}\end{array}\right) x^{k} y^{m-k}=\sum_{k \leq m} \left( \begin{array}{c}{-r} \\ {k}\end{array}\right)(-x)^{k}(x+y)^{m-k}, \quad m是整数
当m小于0时,两边均为0;当m=0时,两边都是1。
令左边部分为Sm,右边部分为Tm

S m = k m ( m 1 + r k ) x k y m k + k m ( m 1 + r k 1 ) x k y m k S_{m}=\sum_{k \leq m} \left( \begin{array}{c}{m-1+r} \\ {k}\end{array}\right) x^{k} y^{m-k}+\sum_{k \leqslant m} \left( \begin{array}{c}{m-1+r} \\ {k-1}\end{array}\right) x^{k} y^{m-k}
其中,
k m ( m 1 + r k ) x k y m k = ( m 1 + r m ) x m + k m 1 ( m + 1 + r k ) x k y m k = y S m 1 + ( m 1 + r m ) x m \sum_{k \leqslant m} \left( \begin{array}{c}{m-1+r} \\ {k}\end{array}\right) x^{k} y^{m-k}=\left( \begin{array}{c}{m-1+r} \\ {m}\end{array}\right) x^{m}+ \sum_{k \leqslant m-1} \left( \begin{array}{c}{m+1+r} \\ {k}\end{array}\right) x^{k} y^{m-k}=y S_{m-1}+\left( \begin{array}{c}{m-1+r} \\ {m}\end{array}\right) x^{m}

k m ( m 1 + r k 1 ) x k y m k = x k m ( m 1 + r k 1 ) x k 1 y ( m 1 ) ( k 1 ) = x S m 1 \sum_{k \leq m} \left( \begin{array}{c}{m-1+r} \\ {k-1}\end{array}\right) x^{k} y^{m-k}=x\sum_{k \leq m} \left( \begin{array}{c}{m-1+r} \\ {k-1}\end{array}\right) x^{k-1} y^{(m-1)-(k-1)}=x S_{m-1}

因此, S m = ( x + y ) S m 1 + ( r m ) ( x ) m S_{m}=(x+y) S_{m-1}+\left( \begin{array}{c}{-r} \\ {m}\end{array}\right)(-x)^{m}

因此,可证明Sm和Tm是相等的!


k m ( m + r k ) ( 1 ) k = ( r m ) \sum_{k \leqslant m} \left( \begin{array}{c}{m+r} \\ {k}\end{array}\right)(-1)^{k}=\left( \begin{array}{c}{-r} \\ {m}\end{array}\right) ,整数 m 0 m \geqslant 0
相当于(5.16)


( r m ) ( m k ) = ( r k ) ( r k m k ) , m , k \left( \begin{array}{c}{r} \\ {m}\end{array}\right) \left( \begin{array}{l}{m} \\ {k}\end{array}\right)=\left( \begin{array}{l}{r} \\ {k}\end{array}\right) \left( \begin{array}{l}{r-k} \\ {m-k}\end{array}\right), \quad m, k是整数

( r m ) ( m k ) = r ! m ! ( r m ) ! m ! k ! ( m k ) ! = r ! k ! ( m k ) ! ( r m ) ! = r ! k ! ( r k ) ! ( r k ) ! k ! ( r k ) ! ( r k ) ! ( m k ) ! ( r m ) ! = ( r k ) ( r k m k ) \begin{aligned} \left( \begin{array}{c}{r} \\ {m}\end{array}\right) \left( \begin{array}{l}{m} \\ {k}\end{array}\right) &=\frac{r !}{m !(r-m) !} \frac{m !}{k !(m-k) !} \\ &=\frac{r !}{k !(m-k) !(r-m) !} \\ &=\frac{r !}{k !(r-k) !} \frac{(r-k) !}{k !(r-k) !} \frac{(r-k) !}{(m-k) !(r-m) !}=\left( \begin{array}{l}{r} \\ {k}\end{array}\right) \left( \begin{array}{l}{r-k} \\ {m-k}\end{array}\right) \end{aligned}


在这里插入图片描述
( a + b + c a , b , c ) = ( a + b + c ) ! a ! b ! c ! \left( \begin{array}{c}{a+b+c} \\ {a, b, c}\end{array}\right)=\frac{(a+b+c) !}{a ! b ! c !}

多项式系数:

( a 1 + a 2 + + a m a 1 , a 2 ,   , a m ) = ( a 1 + a 2 + + a m ) ! a 1 ! a 2 ! a m ! \left( \begin{array}{c}{a_{1}+a_{2}+\cdots+a_{m}} \\ {a_{1}, a_{2}, \cdots, a_{m}}\end{array}\right)=\frac{\left(a_{1}+a_{2}+\cdots+a_{m}\right) !}{a_{1} ! a_{2} ! \cdots a_{m} !} = ( a 1 + a 2 + + a m ! a 2 + + a m ) ( a m 1 + a m a m ) =\left( \begin{array}{c}{a_{1}+a_{2}+\cdots+a_{m} !} \\ {a_{2}+\cdots+a_{m}}\end{array}\right) \cdot \left( \begin{array}{c}{a_{m-1}+a_{m}} \\ {a_{m}}\end{array}\right)

在这里插入图片描述

例子: k ( r m + k ) ( s n k ) \sum_{k} \left( \begin{array}{c}{r} \\ {m+k}\end{array}\right) \left( \begin{array}{c}{s} \\ {n-k}\end{array}\right)
k 1 = m + k k_{1}=m+k
= k 1 m ( r k 1 ) ( s n + m + k 1 ) \sum_{k_{1}-m} \left( \begin{array}{c}{r} \\ {k_{1}}\end{array}\right) \left( \begin{array}{c}{s} \\ {n+m+k1}\end{array}\right) = k 1 m ( r k 1 ) ( S n ( k 1 m ) ) \sum_{k1-m} \left( \begin{array}{l}{r} \\ {k_{1}}\end{array}\right) \left( \begin{array}{c}{S} \\ {n-(k1-m)}\end{array}\right)

K 2 = n k K_{2}=n-k
n k 2 ( r m + n k 2 ) ( S k 2 ) \sum_{n-k_{2}} \left( \begin{array}{c}{r} \\ {m+n-k_{2}}\end{array}\right) \left( \begin{array}{l}{S} \\ {k_{2}}\end{array}\right)

上述表中的式子根本记不住的,其实就是范德蒙德卷积:

k ( r k ) ( s n k ) = ( r + s n ) , n \sum_{k} \left( \begin{array}{c}{r} \\ {k}\end{array}\right) \left( \begin{array}{c}{s} \\ {n-k}\end{array}\right)=\left( \begin{array}{c}{r+s} \\ {n}\end{array}\right), \quad n是整数


发布了129 篇原创文章 · 获赞 105 · 访问量 23万+

猜你喜欢

转载自blog.csdn.net/sunshine_lyn/article/details/90049615