spark(二) rdd具体介绍

spark(二) rdd具体介绍

看完这篇 你可以学到一下内容
1:掌握RDD的原理
2:熟练使用RDD的算子完成计算任务
3:掌握RDD的宽窄依赖
4:掌握RDD的缓存机制
5:掌握划分stage
6:掌握spark的任务调度流程
rdd是什么呢?
RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变、可分区、里面的元素可并行计算的集合

口诉rdd是什么:rdd 是分布式数据集 弹性的,它是一个不可变,可分区,而且里面的元素可并行计算的

rdd 特性:
RDD允许用户在执行多个查询时显式地将数据缓存在内存中,后续的查询能够重用这些数据,这极大地提升了查询速度

Dataset:一个数据集合,用于存放数据的。
Distributed:RDD中的数据是分布式存储的,可用于分布式计算。
Resilient:RDD中的数据可以存储在内存中或者磁盘中。
1) A list of partitions :一个分区(Partition)列表,数据集的基本组成单位。
对于RDD来说,每个分区都会被一个计算任务处理,并决定并行计算的粒度。用户可以在创建RDD时指定RDD的分区个数,如果没有指定,那么就会采用默认值。(比如:读取HDFS上数据文件产生的RDD分区数跟block的个数相等)

2)A function for computing each split :一个计算每个分区的函数。
Spark中RDD的计算是以分区为单位的,每个RDD都会实现compute计算函数以达到这个目的。

3)A list of dependencies on other RDDs:一个RDD会依赖于其他多个RDD,RDD之间的依赖关系。
RDD的每次转换都会生成一个新的RDD,所以RDD之间就会形成类似于流水线一样的前后依赖关系。在部分分区数据丢失时,Spark可以通过这个依赖关系重新计算丢失的分区数据,而不是对RDD的所有分区进行重新计算。

4)Optionally, a Partitioner for key-value RDDs (e.g. to say that the RDD is hash-partitioned):一个Partitioner,即RDD的分区函数(可选项)。
当前Spark中实现了两种类型的分区函数,一个是基于哈希的HashPartitioner,另外一 个是基于范围的RangePartitioner。只有对于key-value的RDD,才会有Partitioner(必须要产生shuffle),非key-value的RDD的Parititioner的值是None。

5)Optionally, a list of preferred locations to compute each split on (e.g. block locations for an HDFS file):一个列表,存储每个Partition的优先位置(可选项)。
对于一个HDFS文件来说,这个列表保存的就是每个Partition所在的块的位置。按照“移动数据不如移动计算”的理念,Spark在进行任务调度的时候,会尽可能地将计算任务分配到其所要处理数据块的存储位置(spark进行任务分配的时候尽可能选择那些存有数据的worker节点来进行任务计算)。
为什么会产生RDD?
(1)传统的MapReduce虽然具有自动容错、平衡负载和可拓展性的优点,但是其最大缺点是采用非循环式的数据流模型,使得在迭代计算中要进行大量的磁盘IO操作。RDD正是解决这一缺点的抽象方法。

(2) RDD是Spark提供的最重要的抽象的概念,它是一种具有容错机制的特殊集合,可以分布在集群的节点上,以函数式编程来操作集合,进行各种并行操作。可以把RDD的结果数据进行缓存,方便进行多次重用,避免重复计算

RDD在Spark中的地位及作用
(1)为什么会有Spark?
因为传统的并行计算模型无法有效的解决迭代计算(iterative)和交互式计算(interactive);而Spark的使命便是解决这两个问题,这也是他存在的价值和理由。

(2)Spark如何解决迭代计算?
其主要实现思想就是RDD,把所有计算的数据保存在分布式的内存中。迭代计算通常情况下都是对同一个数据集做反复的迭代计算,数据在内存中将大大提升IO操作。这也是Spark涉及的核心:内存计算。

(3)Spark如何实现交互式计算?
因为Spark是用scala语言实现的,Spark和scala能够紧密的集成,所以Spark可以完美的运用scala的解释器,使得其中的scala可以向操作本地集合对象一样轻松操作分布式数据集。

(4)Spark和RDD的关系?
RDD是一种具有容错性、基于内存计算的抽象方法,RDD是Spark Core的底层核心,Spark则是这个抽象方法的实现。

创建RDD
1)由一个已经存在的Scala集合创建。
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

2)由外部存储系统的文件创建。包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等。
val rdd2 = sc.textFile("/words.txt")

3)已有的RDD经过算子转换生成新的RDD
val rdd3=rdd2.flatMap(_.split(" "))

RDD编程API
4.1 RDD的算子分类
Transformation(转换):根据数据集创建一个新的数据集,计算后返回一个新RDD;例如:一个rdd进行map操作后生了一个新的rdd。
Action(动作):对rdd结果计算后返回一个数值value给驱动程序,或者把结果存储到外部存储系统(例如HDFS)中;
例如:collect算子将数据集的所有元素收集完成返回给驱动程序。

4.2 Transformation
RDD中的所有转换都是延迟加载的,也就是说,它们并不会直接计算结果。相反的,它们只是记住这些应用到基础数据集(例如一个文件)上的转换动作。只有当发生一个要求返回结果给Driver的动作或者将结果写入到外存储中,这些转换才会真正运行。这种设计让Spark更加有效率地运行。

常用的Transformation:
在这里插入图片描述
4.3 Action
在这里插入图片描述
5.RDD常用的算子操作
Spark Rdd的所有算子操作,请见《sparkRDD函数详解.docx》
启动spark-shell 进行测试:
spark-shell --master spark://node1:7077
练习1:map、filter
//通过并行化生成rdd
val rdd1 = sc.parallelize(List(5, 6, 4, 7, 3, 8, 2, 9, 1, 10))
//对rdd1里的每一个元素乘2然后排序
val rdd2 = rdd1.map(_ * 2).sortBy(x => x, true)
//过滤出大于等于5的元素
val rdd3 = rdd2.filter(_ >= 5)
//将元素以数组的方式在客户端显示
rdd3.collect

练习2:flatMap
val rdd1 = sc.parallelize(Array(“a b c”, “d e f”, “h i j”))
//将rdd1里面的每一个元素先切分在压平
val rdd2 = rdd1.flatMap(_.split(" "))
rdd2.collect

练习3:交集、并集
val rdd1 = sc.parallelize(List(5, 6, 4, 3))
val rdd2 = sc.parallelize(List(1, 2, 3, 4))
//求并集
val rdd3 = rdd1.union(rdd2)
//求交集
val rdd4 = rdd1.intersection(rdd2)
//去重
rdd3.distinct.collect
rdd4.collect

练习4:join、groupByKey
val rdd1 = sc.parallelize(List((“tom”, 1), (“jerry”, 3), (“kitty”, 2)))
val rdd2 = sc.parallelize(List((“jerry”, 2), (“tom”, 1), (“shuke”, 2)))
//求join
val rdd3 = rdd1.join(rdd2)
rdd3.collect
//求并集
val rdd4 = rdd1 union rdd2
rdd4.collect
//按key进行分组
val rdd5=rdd4.groupByKey
rdd5.collect

练习5:cogroup
val rdd1 = sc.parallelize(List((“tom”, 1), (“tom”, 2), (“jerry”, 3), (“kitty”, 2)))
val rdd2 = sc.parallelize(List((“jerry”, 2), (“tom”, 1), (“jim”, 2)))
//cogroup
val rdd3 = rdd1.cogroup(rdd2)
//注意cogroup与groupByKey的区别
rdd3.collect

练习6:reduce
val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5))
//reduce聚合
val rdd2 = rdd1.reduce(_ + _)
rdd2.collect

练习7:reduceByKey、sortByKey
val rdd1 = sc.parallelize(List((“tom”, 1), (“jerry”, 3), (“kitty”, 2), (“shuke”, 1)))
val rdd2 = sc.parallelize(List((“jerry”, 2), (“tom”, 3), (“shuke”, 2), (“kitty”, 5)))
val rdd3 = rdd1.union(rdd2)
//按key进行聚合
val rdd4 = rdd3.reduceByKey(_ + _)
rdd4.collect
//按value的降序排序
val rdd5 = rdd4.map(t => (t._2, t._1)).sortByKey(false).map(t => (t._2, t._1))
rdd5.collect
练习8:repartition、coalesce
val rdd1 = sc.parallelize(1 to 10,3)
//利用repartition改变rdd1分区数
//减少分区
rdd1.repartition(2).partitions.size
//增加分区
rdd1.repartition(4).partitions.size
//利用coalesce改变rdd1分区数
//减少分区
rdd1.coalesce(2).partitions.size

注意:repartition可以增加和减少rdd中的分区数,coalesce只能减少rdd分区数,增加rdd分区数不会生效。
6.RDD的依赖关系
6.1 RDD的依赖
RDD和它依赖的父RDD的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。
如图:
在这里插入图片描述
6.2 窄依赖
窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用
总结:窄依赖我们形象的比喻为独生子女

6.3 宽依赖
宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition
总结:宽依赖我们形象的比喻为超生

6.4 Lineage(血统)
RDD只支持粗粒度转换,即只记录单个块上执行的单个操作。将创建RDD的一系列Lineage(即血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

7. RDD的缓存
Spark速度非常快的原因之一,就是在不同操作中可以在内存中持久化或者缓存数据集。
当持久化某个RDD后,每一个节点都将把计算分区结果保存在内存中,对此RDD或衍生出的RDD进行的其他动作中重用。这使得后续的动作变得更加迅速。RDD相关的持久化和缓存,是Spark最重要的特征之一。可以说,缓存是Spark构建迭代式算法和快速交互式查询的关键。
7.1 RDD缓存方式
RDD通过persist方法或cache方法可以将前面的计算结果缓存,但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用。

通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。

在这里插入图片描述
缓存有可能丢失,或者存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。

8. DAG的生成
8.1 什么是DAG
DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就形成了DAG,根据RDD之间依赖关系的不同将DAG划分成不同的Stage(调度阶段)。对于窄依赖,partition的转换处理在一个Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。

在这里插入图片描述
9. Spark任务调度
9.1 任务调度流程图
在这里插入图片描述
各个RDD之间存在着依赖关系,这些依赖关系就形成有向无环图DAG,DAGScheduler对这些依赖关系形成的DAG进行Stage划分,划分的规则很简单,从后往前回溯,遇到窄依赖加入本stage,遇见宽依赖进行Stage切分。完成了Stage的划分。DAGScheduler基于每个Stage生成TaskSet,并将TaskSet提交给TaskScheduler。TaskScheduler 负责具体的task调度,最后在Worker节点上启动task。
9.2 DAGScheduler
(1)DAGScheduler对DAG有向无环图进行Stage划分。
(2)记录哪个RDD或者 Stage 输出被物化(缓存),通常在一个复杂的shuffle之后,通常物化一下(cache、persist),方便之后的计算。
(3)重新提交shuffle输出丢失的stage(stage内部计算出错)给TaskScheduler
(4)将 Taskset 传给底层调度器
a)– spark-cluster TaskScheduler
b)– yarn-cluster YarnClusterScheduler
c)– yarn-client YarnClientClusterScheduler

9.3 TaskScheduler
(1)为每一个TaskSet构建一个TaskSetManager 实例管理这个TaskSet 的生命周期
(2)数据本地性决定每个Task最佳位置
(3)提交 taskset( 一组task) 到集群运行并监控
(4)推测执行,碰到计算缓慢任务需要放到别的节点上重试
(5)重新提交Shuffle输出丢失的Stage给DAGScheduler

三、RDD容错机制之checkpoint
10. checkpoint是什么
(1)、Spark 在生产环境下经常会面临transformation的RDD非常多(例如一个Job中包含1万个RDD)或者具体transformation的RDD本身计算特别复杂或者耗时(例如计算时长超过1个小时),这个时候就要考虑对计算结果数据持久化保存;
(2)、Spark是擅长多步骤迭代的,同时擅长基于Job的复用,这个时候如果能够对曾经计算的过程产生的数据进行复用,就可以极大的提升效率;
(3)、如果采用persist把数据放在内存中,虽然是快速的,但是也是最不可靠的;如果把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏,系统管理员可能清空磁盘。
(4)、Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint的时候可以指定把数据放在本地,并且是多副本的方式,但是在生产环境下是放在HDFS上,这就天然的借助了HDFS高容错、高可靠的特征来完成了最大化的可靠的持久化数据的方式;
假如进行一个1万个算子操作,在9000个算子的时候persist,数据还是有可能丢失的,但是如果checkpoint,数据丢失的概率几乎为0。

11. checkpoint原理机制
(1)当RDD使用cache机制从内存中读取数据,如果数据没有读到,会使用checkpoint机制读取数据。此时如果没有checkpoint机制,那么就需要找到父RDD重新计算数据了,因此checkpoint是个很重要的容错机制。checkpoint就是对于一个RDD chain(链)如果后面需要反复使用某些中间结果RDD,可能因为一些故障导致该中间数据丢失,那么就可以针对该RDD启动checkpoint机制,使用checkpoint首先需要调用sparkContext的setCheckpointDir方法,设置一个容错文件系统目录,比如hdfs,然后对RDD调用checkpoint方法。之后在RDD所处的job运行结束后,会启动一个单独的job来将checkpoint过的数据写入之前设置的文件系统持久化,**进行高可用。**所以后面的计算在使用该RDD时,如果数据丢失了,但是还是可以从它的checkpoint中读取数据,不需要重新计算。
(2)persist或者cache与checkpoint的区别在于,前者持久化只是将数据保存在BlockManager中但是其lineage是不变的,但是后者checkpoint执行完后,rdd已经没有依赖RDD,只有一个checkpointRDD,checkpoint之后,RDD的lineage就改变了。persist或者cache持久化的数据丢失的可能性更大,因为可能磁盘或内存被清理,但是checkpoint的数据通常保存到hdfs上,放在了高容错文件系统。

四、Spark运行架构
12. Spark运行基本流程 .
Spark运行基本流程参见下面示意图:
在这里插入图片描述

  1. 构建Spark Application的运行环境(启动SparkContext),SparkContext向资源管理器(可以是Standalone、Mesos或YARN)注册并申请运行Executor资源;
  2. 资源管理器分配Executor资源并启动Executor,Executor运行情况将随着心跳发送到资源管理器上;
    3)SparkContext构建成DAG图,将DAG图分解成Stage,并把Taskset发送给Task Scheduler。Executor向SparkContext申请Task,Task Scheduler将Task发放给Executor运行同时SparkContext将应用程序代码发放给Executor。
    Task在Executor上运行,运行完毕释放所有资源。

13. Spark运行架构特点
Spark运行架构特点:
1.每个Application获取专属的executor进程,该进程在Application期间一直驻留,并以多线程方式运行tasks。
2.Spark任务与资源管理器无关,只要能够获取executor进程,并能保持相互通信就可以了。
3.提交SparkContext的Client应该靠近Worker节点(运行Executor的节点),最好是在同一个Rack里,因为Spark程序运行过程中SparkContext和Executor之间有大量的信息交换;如果想在远程集群中运行,最好使用RPC将SparkContext提交给集群,不要远离Worker运行SparkContext。
4.Task采用了数据本地性和推测执行的优化机制。

发布了105 篇原创文章 · 获赞 87 · 访问量 3万+

猜你喜欢

转载自blog.csdn.net/zengxianglei/article/details/91355386
今日推荐