蓝桥杯 ALGO-119 算法训练 寂寞的数

算法训练 寂寞的数

时间限制:1.0s 内存限制:256.0MB

 

问题描述
  道德经曰:一生二,二生三,三生万物。
  对于任意正整数n,我们定义d(n)的值为为n加上组成n的各个数字的和。例如,d(23)=23+2+3=28, d(1481)=1481+1+4+8+1=1495。
  因此,给定了任意一个n作为起点,你可以构造如下一个递增序列:n,d(n),d(d(n)),d(d(d(n)))….例如,从33开始的递增序列为:
  33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, …
  我们把n叫做d(n)的生成元,在上面的数列中,33是39的生成元,39是51的生成元,等等。有一些数字甚至可以有两个生成元,比如101,可以由91和100生成。但也有一些数字没有任何生成元,如42。我们把这样的数字称为寂寞的数字。

 

输入格式
  一行,一个正整数n。

 

输出格式
  按照升序输出小于n的所有寂寞的数字,每行一个。

 

样例输入
40

 

样例输出
1
3
5
7
9
20
31

 

数据规模和约定
  n<=10000

 

 

#include <stdio.h>

int d(int n)
{
    int sum = n;
    while (n)
    {
        sum += n % 10;
        n /= 10;
    }
    return sum;
}

int main()
{
    int n, next;
    int not_alone[10005] = { 0 };

    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
    {
        next = d(i);
        while (next <= n)
        {
            not_alone[next] = 1;
            next = d(next);
        }
    }

    for (int i = 1; i <= n; ++i)
    {
        if (!not_alone[i])
            printf("%d\n", i);
    }

    return 0;
}

 

发布了183 篇原创文章 · 获赞 40 · 访问量 3万+

猜你喜欢

转载自blog.csdn.net/liulizhi1996/article/details/103980286