一道圆锥曲线题的隐式求导写法

Problem

已知抛物线 \(C:~y^2=2x\) 的焦点为 \(F\),准线为 \(l\),点 \(P\) 为抛物线 \(C\) 上一动点(异于顶点),过 \(P\) 做准线 \(l\) 的垂线,垂足为 \(H\),且 \(\triangle PFH\) 重心为 \(M\),求证 \(MP\) 与抛物线 \(C\)相切。

Solution

\(P(x_0,y_0)\),则有 \(H(-\frac{1}{2},y_0),~F(\frac{1}{2},0)\)
\(Q\)\(PF\) 中点,则 \(Q(\frac{x_0+\frac{1}{2}}{2},{\frac{y_0}{2}})\)
\(k_{PF}=\frac{y_0}{x_0-\frac{1}{2}}\)

为方便描述,下述带有 \(\bot\) 下标的边表示该边的垂直平分线。

\(k_{PF_\bot}=\frac{-x_0+\frac{1}{2}}{y_0}\)
\(l_{PF_\bot}:~y=\frac{-x_0+\frac{1}{2}}{y_0}(x-\frac{x_0+\frac{1}{2}}{2})+\frac{y_0}{2}=\frac{-x_0+\frac{1}{2}}{y_0}(x-\frac{x_0}{2}-\frac{1}{4})+\frac{y_0}{2}\)
\(l_{PH_\bot}:~x=\frac{x_0-\frac{1}{2}}{2}=\frac{x_0}{2}-\frac{1}{4}\)
\(M=l_{PF_\bot}\cap l_{PH\bot}\rightarrow y=\frac{-x_0+\frac{1}{2}}{y_0}(\frac{x_0}{2}-\frac{1}{4}-\frac{x_0}{2}-\frac{1}{4})+\frac{y_0}{2}=\frac{x_0-\frac{1}{2}}{2y_0}+\frac{y_0}{2}=\frac{y_0^2+x_0-\frac{1}{2}}{2y_0}=\frac{3x_0-\frac{1}{2}}{2y_0}\)
\(k_{PM}=\frac{y_0-\frac{3x_0-\frac{1}{2}}{2y_0}}{x_0-\frac{2x_0-1}{4}}=\frac{\frac{2y_0^2-3x_0}{2y_0}+\frac{1}{2}}{\frac{4x_0-2x_0+1}{4}}=\frac{\frac{x_0+\frac{1}{2}}{2y_0}}{\frac{2x_0+1}{4}}=\frac{\frac{2x_0+1}{y_0}}{2x_0+1}=\frac{1}{y_0}\)

隐式求导,得 \(2y\frac{\text{d}y}{\text{d}x}=2\),即 \(\frac{\text{d}y}{\text{d}x}=\frac{1}{y}\)

猜你喜欢

转载自www.cnblogs.com/ksyx/p/solving-a-conic-curve-prob-using-implicit-diff.html