[笔记]狄利克雷卷积+莫比乌斯反演

前置芝士

整除分块

例题

二项式定理

\((x+y)^n=\sum_{i=0}^{n}C_{n}^{i}*x^{i}*y^{n-i}\)

关于\(gcd\)

  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}[gcd(i,j)==1]\)

  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}i*j*[gcd(i,j)==x] \Leftrightarrow \sum_{i=1}^{\left \lfloor \frac{n}{x} \right \rfloor} \sum_{j=1}^{\left \lfloor \frac{m}{x} \right \rfloor}i*j*[gcd(i,j)==1]*x^{2}\)

  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[x|gcd(i,j)] \Leftrightarrow \left \lfloor \frac{n}{x} \right\rfloor \left \lfloor \frac{m}{x} \right\rfloor\)

  • \(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1] \Leftrightarrow \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{d|gcd(i,j)}\mu(d)\)

---------------------------------------------\(\Leftrightarrow \sum_{d=1}^{n}\mu(d)*\sum_{i=1}^{n}\sum_{j=1}^{m}[d|gcd(i,j)]\)


狄利克雷卷积&莫比乌斯反演

从狄利克雷卷积证明莫比乌斯反演

莫比乌斯反演例题


先乱放了

没看过

猜你喜欢

转载自www.cnblogs.com/SCL123/p/11248395.html