傅里叶级数推导

物理意义:把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。

三角函数系

cos x, sinx, cos2x, sin2x.…, cosnx, sinnx.…

正交性

在[- π \pi π \pi ]上正交,即其中任意两个不同的函数之积在[- π \pi π \pi ]上的积分等于0.

可以证明:

  • π π cos n x d x = 0 \int_{-\pi}^{\pi} \cos n x d x=0
  • π π sin n x d x = 0 \int_{-\pi}^{\pi} \sin n x d x=0
  • π π cos m x cos n x d x = 0 ( m = 1 , 2 , 3 ,   , n = 1 , 2 , 3 , m n ) \begin{array}{c}{\int_{-\pi}^{\pi} \cos m x \cos n x d x=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots m \neq n )}\end{array}
  • π π sin m x sin n x d x = 0 ( m = 1 , 2 , 3 ,   , n = 1 , 2 , 3 , m n ) \begin{array}{c}{\int_{-\pi}^{\pi} \sin m x \sin n x d x=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots m \neq n )}\end{array}
  • π π sin m x cos n x d x = 0 ( m = 1 , 2 , 3 ,   , n = 1 , 2 , 3 ,   ) \begin{aligned} \int_{-\pi}^{\pi} \sin m x \cos n x d x &=0 \quad(m=1,2,3, \cdots, n=1,2,3, \cdots ) \end{aligned} 当m=n时
    π π 1 1 d x = 2 π π π cos 2 n x d x = π π π sin 2 n x d x = π ( n = 1 , 2 ,   ) \begin{array}{l}{\int_{-\pi}^{\pi} 1 \cdot 1 \mathrm{d} x=2 \pi} \\\\ {\int_{-\pi}^{\pi} \cos ^{2} n x d x=\pi} \\\\ {\int_{-\pi}^{\pi} \sin ^{2} n x d x=\pi}\end{array}(n=1,2, \cdots)
    f ( x ) f(x) 是周期为2 π \pi 的周期函数,且可逐项积分,利用三角级数得
    f ( x ) = a 0 2 + n = 1 ( a n cos n x + b n sin n x ) f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) 想要表达 f ( x ) f(x) 得求出 a 0 , a n , b n a_{0},a_{n},b_{n} ,对两边进行积分得
    π π f ( x ) d x = π π a 0 2 d x + n = 1 [ π π a n cos n x d x + π π b n sin n x d x ] \begin{aligned} \int_{-\pi}^{\pi} f(x) \mathrm{d} x=& \int_{-\pi}^{\pi} \frac{a_{0}}{2} \mathrm{d} x+\sum_{n=1}^{\infty}\left[\int_{-\pi}^{\pi} a_{n} \cos n x \mathrm{d} x\right. +\int_{-\pi}^{\pi} b_{n} \sin n x \mathrm{d} x ] \end{aligned} 因为 a 0 , a n , b n a_{0}, a_{n}, b_{n} 为常数,利用三角函数的正交性
  • π π cos n x d x = 0 \int_{-\pi}^{\pi} \cos n x d x=0
  • π π sin n x d x = 0 \int_{-\pi}^{\pi} \sin n x d x=0
    得到
    π π f ( x ) d x = π π a 0 2 d x = π a 0 \int_{-\pi}^{\pi} f(x) \mathrm{d} x=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \mathrm{d} x=\pi a_{0}
    a 0 = 1 π π π f ( x ) d x a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x
    为了求 a n a_{n} ,在等式两边 cos k x \cos k x
    π π f ( x ) cos k x d x = π π a 0 2 cos k x d x + n = 1 I π π a n cos k x cos n x d x + π π b n cos k x sin n x d x ] \begin{aligned} \int_{-\pi}^{\pi} f(x) \cos k x d x &=\int_{-\pi}^{\pi} \frac{a_{0}}{2} \cos k x d x \\ &+\sum_{n=1}^{\infty} I_{-\pi}^{\pi} a_{n} \cos k x \cos n x d x \\ &+\int_{-\pi}^{\pi} b_{n} \cos k x \sin n x d x ] \end{aligned} 当k=n时,由三角函数的正交性可知 π π a n cos k x cos n x d x = π π a n cos 2 n x d x = a n π π 1 + cos 2 n x 2 d x = a n π \begin{aligned} & \int_{-\pi}^{\pi} a_{n} \cos k x \cos n x d x=\int_{-\pi}^{\pi} a_{n} \cos ^{2} n x d x \\=& a_{n} \int_{-\pi}^{\pi} \frac{1+\cos 2 n x}{2} d x=a_{n} \pi \end{aligned} 其余各项均为零.因此 a n = 1 π π π f ( x ) cos n x d x ( n = 1 , 2 , 3 ,   ) a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \quad(n=1,2,3, \cdots) 同理 b n = 1 π π π f ( x ) sin n x d x ( n = 1 , 2 , 3 ,   ) b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad(n=1,2,3, \cdots)
    整理一下得:
    { a n = 1 π π π f ( x ) cos n x d x ( n = 0 , 1 , 2 ,   ) b n = 1 π π π f ( x ) sin n x d x ( n = 1 , 2 , 3 ,   ) \left\{\begin{array}{ll}{a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x} & {(n=0,1,2, \cdots)} &\\\\ {b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x} & {(n=1,2,3, \cdots)}\end{array}\right.
    a n ( 0 ) b n a_{n}(0开始的),b_{n} 称为傅里叶系数。由傅里叶系数组成的三角级数称为傅里叶级数。


f ( x ) = { 1 , π x < 0 1 , 0 x < π f(x)=\left\{\begin{array}{lr}{-1,} & {-\pi \leq x<0} \\ {1,} & {0 \leq x<\pi}\end{array}\right.
在这里插入图片描述

a n = 1 π π π f ( x ) cos n x d x = 1 π π 0 ( 1 ) cos n x d x + 1 π 0 π cos n x d x = 1 π 1 n sin n x ] π 0 + 1 π 1 n sin n x ] 0 π = 0 ( n = 0 , 1 , 2 , 3   ) \begin{aligned} a_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\ &=\frac{1}{\pi} \int_{-\pi}^{0}(-1) \cos n x d x+\frac{1}{\pi} \int_{0}^{\pi} \cos n x d x \\ &=-\frac{1}{\pi} \frac{1}{n} \sin n x ]_{-\pi}^{0}+\frac{1}{\pi} \frac{1}{n} \sin n x ]_{0}^{\pi}=0 \\ &(n=0,1,2,3 \cdots) \end{aligned}
b n = 1 π π π f ( x ) sin u x d x = 1 π π 0 ( 1 ) sin x d x + 1 π 0 π sin x d x = 1 π 1 n cos n x π 0 1 π [ 1 n cos n x ] 0 π = 2 n π [ 1 ( 1 ) n ] = { 4 n π , n = 1 , 3 , 5 , 0 \begin{aligned} b_{n} &=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin u x d x \\ &=\frac{1}{\pi} \int_{-\pi}^{0}(-1) \sin x d x+\frac{1}{\pi} \int_{0}^{\pi} \sin x d x \\ &=\frac{1}{\pi} \frac{1}{n} \cos n\left.x\right|_{-\pi} ^{0}-\frac{1}{\pi}\left[\frac{1}{n} \cos n x\right]_{0}^{\pi} \\ &=\frac{2}{n \pi}\left[1-(-1)^{n}\right] \\ &=\left\{\begin{array}{l}{\frac{4}{n \pi}, n=1,3,5, \cdots} \\ {0}\end{array}\right. \end{aligned} 所以 f ( x ) = n = 1 b n sin n x = 4 π [ sin x + 1 3 sin 3 x + + 1 2 n 1 sin ( 2 n 1 ) x +   ] f(x)=\sum_{n=1}^{\infty}b_{n} \sin n x\\=\frac{4}{\pi}\left[\sin x+\frac{1}{3} \sin 3 x+\cdots+\frac{1}{2 n-1} \sin (2 n-1) x+\cdots\right]

猜你喜欢

转载自blog.csdn.net/fzf1996/article/details/91430479