博弈论模板

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/UncleJokerly/article/details/89162395

博弈论讲解 :

【算法讲堂】【电子科技大学】【ACM】博弈论基础

SWPU-ACM每周算法讲堂-博弈论入门

博弈论题目有如下特征:

1.有两名选手;

2.两名选手交替操作,每次一步,每步都是在有限的合法集合中选取一种进行;

3.在任何情况下,合法操作只取决于情况本身,与选手无关;

4.游戏的败北条件为:当某位选手需要进行操作时,当前没有任何可以执行的合法操作,则该选手败北。

一、巴什博弈(Bash Game)

只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。最后取光者得胜。

显然,如果n=m+1,1那么由于一次最多只能取m个,所以,无论先取者拿走多少个,后取者都能够一次拿走剩余的物品,后者取胜。因此我们发现了如何取胜的法则:每个回合时m+1个,如果n=(m+1)*r+s,(r为任意自然数,s≤m),那么先取者要拿走s个物品,如果后取者拿走k(≤m)个,那么先取者再拿走m+1-k个,结果剩下(m+1)(r-1)个,以后保持这样的取法,那么先取者肯定获胜。总之,要保持给对手留下(m+1)的倍数,就能最后获胜。

总结上面的分析得出公式:有n个物品每次最多取m个,先取完的获胜,则n%(m+1)==0时为必胜状态。

例题:HDU - 1846 Brave Game(巴什博弈模板)

代码:

int mod=n%(m+1);
if(mod>=1) printf("first\n");
else printf("second\n");

二、斐波那契博弈(Fibonacci's Game)

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1)先手不能在第一次把所有的石子取完;

2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

以下了解就好,主要记住最后的结果。

约定取走最后一个石子的人为赢家,求必败态。

  这个和之后讲到的Wythoff’s Game 和取石子游戏 有一个很大的不同点,就是游戏规则的动态化。之前的规则中,每次可以取的石子的策略集合是基本固定的,但是这次有规则:一方每次可以取的石子数依赖于对手刚才取的石子数。

  这个游戏叫做Fibonacci Nim,肯定和Fibonacci数列:f[n]:1,2,3,5,8,13,21,34,55,89,… 有密切的关系。如果试验一番之后,可以猜测:先手胜当且仅当n不是Fibonacci数。换句话说,必败态构成Fibonacci数列。

就像“Wythoff博弈”需要“Beatty定理”来帮忙一样,这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。定理的证明可以在这里 看到,不过我觉得更重要的是自己动手分解一下。

比如,我们要分解83,注意到83被夹在55和89之间,于是把83可以写成83=55+28;然后再想办法分解28,28被夹在21和34之间,于是28=21+7;依此类推 7=5+2,故 ;

  如果n=83,我们看看这个分解有什么指导意义:假如先手取2颗,那么后手无法取5颗或更多,而5是一个Fibonacci数,如果猜测正确的话,(面临这5颗的先手实际上是整个游戏的后手)那么一定是先手取走这5颗石子中的最后一颗,而这个我们可以通过第二类归纳法来绕过,同样的道理,接下去先手取走接下来的后21颗中的最后一颗,再取走后55颗中的最后一颗,那么先手赢。

  反过来如果n是Fibonacci数,比如n=89:记先手一开始所取的石子数为y,若y>=34颗(也就是89的向前两项),那么一定后手赢,因为89-34=55=34+21<2*34,所以只需要考虑先手第一次取得石子数y<34的情况即可,所以现在剩下的石子数x介于55到89之间,它一定不是一个Fibonacci数,于是我们把x分解成Fibonacci数:x=55+f[i]+…+f[j],若,如果f[j]<=2y,那么对B就是面临x局面的先手,所以根据之前的分析,B只要先取f[j]个即可,以后再按之前的分析就可保证必胜。

总结:先手胜当且仅当n不是Fibonacci数。

例题:HDU - 2516 取石子游戏(斐波那契博弈模板)

1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍。取完者胜.先取者负输出"Second win".先取者胜输出"First win". 

Input

输入有多组.每组第1行是2<=n<2^31. n=0退出. 

Output

先取者负输出"Second win". 先取者胜输出"First win". 
参看Sample Output. 

Sample Input

2
13
10000
0
Sample Output

Second win
Second win
First win
 

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n,fib[50];
	fib[0]=2;
	fib[1]=3;
	for(int i=2;i<50;i++)
	{
		fib[i]=fib[i-1]+fib[i-2];
	}
	while(~scanf("%d",&n)&&n)
	{
		int flag=0;
		for(int i=0;i<50;i++)
		{
			if(fib[i]==n)
			{
				flag=1;
				printf("Second win\n");
			}
			if(fib[i]>n) break;
		}
		if(flag==0) printf("First win\n");
	}
	return 0;
}

代码(伪):


if(n为fib) printf("Second win\n");
else printf("First win\n");

三、威佐夫博奕(Wythoff Game)

有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

这种情况下是颇为复杂的。我们用(ak,bk)(ak ≤ bk ,k=0,1,2,…,n)表示两堆物品的数量并称其为局势,如果甲面对(0,0),那么甲已经输了,这种局势我们称为奇异局势。前几个奇异局势是:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)。

    可以看出,a0=b0=0,ak是未在前面出现过的最小自然数,而 bk= ak + k,奇异局势有

如下三条性质:

    1.任何自然数都包含在一个且仅有一个奇异局势中。

    由于ak是未在前面出现过的最小自然数,所以有ak > ak-1 ,而 bk= ak + k > ak-1 + k-1 = bk-1 > ak-1 。所以性质1。成立。

    2.任意操作都可将奇异局势变为非奇异局势。

    事实上,若只改变奇异局势(ak,bk)的某一个分量,那么另一个分量不可能在其他奇异局势中,所以必然是非奇异局势。如果使(ak,bk)的两个分量同时减少,则由于其差不变,且不可能是其他奇异局势的差,因此也是非奇异局势。

    3.采用适当的方法,可以将非奇异局势变为奇异局势。 

    从如上性质可知,两个人如果都采用正确操作,那么面对非奇异局势,先拿者必胜;反之,则后拿者取胜。

4.(Betty 定理):如果存在正无理数 A, B 满足 1/A + 1/B = 1,那么集合 P = { [At], t ∈ Z+}、Q = { [Bt], t ∈ Z+} 恰为集合 Z+ 的一个划分,即:P ∪ Q = Z+,P ∩ Q = ø。

5.上述矩阵中每一行第一列的数为 [Φi],第二列的数为 [(Φ + 1)i],其中 Φ = (sqrt(5) + 1) / 2 为黄金分割比。

    那么任给一个局势(a,b),怎样判断它是不是奇异局势呢?我们有如下公式:

    ak =[k(1+√5)/2],bk= ak + k  (k=0,1,2,…,n 方括号表示取整函数)

奇妙的是其中出现了黄金分割数(1+√5)/2 = 1.618…,因此,由ak,bk组成的矩形近似为黄金矩形,由于2/(1+√5)=(√5-1)/2,可以先求出j=[a(√5-1)/2],若a=[(1+√5)/2],那么a = aj,bj = aj + j,若不等于,那么a = aj+1,bj+1 = aj+1+ j + 1,若都不是,那么就不是奇异局势。然后再按照上述法则进行,一定会遇到奇异局势。(poj 1067)

总结:黄金分割比,首先求出差值,差值*黄金分割==最小值的话后手赢,否则先手赢。

例题:POJ - 1067 取石子游戏(威佐夫博弈模板)

代码:

if(a>b) swap(a,b);
if(a==int(1.0*(b-a)*(sqrt(5.0)+1)/2)) printf("0\n");//黄金分割比:根号5加1除以2 
else printf("1\n");//先取者胜

四、尼姆博奕(Nimm Game)

有三堆各若干个物品,两个人轮流从某一堆取任意多的物品,规定每次至少取一个,多者不限,最后取光者得胜。

以下过程还是仅供了解

   这种情况最有意思,它与二进制有密切关系,我们用(a,b,c)表示某种局势,首先(0,0,0)显然是奇异局势,无论谁面对奇异局势,都必然失败。第二种奇异局势是(0,n,n),只要与对手拿走一样多的物品,最后都将导致(0,0,0)。仔细分析一下,(1,2,3)也是奇异局势,无论对手如何拿,接下来都可以变为(0,n,n)的情形。

    计算机算法里面有一种叫做按位模2加,也叫做异或的运算,我们用符号⊕(或者是xor,这个符号不好打,以下用(+)表示)表示这种运算。这种运算和一般加法不同的一点是1+1=0。先看(1,2,3)的按位模2加的结果:

1 =二进制01

2 =二进制10

3 =二进制11 (+)

———————

0 =二进制00 (注意不进位)

对于奇异局势(0,n,n)也一样,结果也是0。

    任何奇异局势(a,b,c)都有a(+)b(+)c =0。

如果我们面对的是一个非奇异局势(a,b,c),要如何变为奇异局势呢?假设 a < b< c,我们只要将 c 变为 a(+)b,即可,因为有如下的运算结果: a(+)b(+)(a(+)b)=(a(+)a)(+)(b(+)b)=0(+)0=0。要将c 变为a(+)b,只要从 c中减去 c-(a(+)b)即可。

    例1。(14,21,39),14(+)21=27,39-27=12,所以从39中拿走12个物体即可达到奇异局势(14,21,27)。

    例2。(55,81,121),55(+)81=102,121-102=19,所以从121中拿走19个物品

就形成了奇异局势(55,81,102)。

    例3。(29,45,58),29(+)45=48,58-48=10,从58中拿走10个,变为(29,4

5,48)。(hdoj 1850)

总结:

n堆物品,两人轮流取,每次取某堆中不少于1个,最后取完者胜。

将n堆物品数量全部异或后结果为0则必败,否则必胜。

例题:HDU - 1850 Being a Good Boy in Spring Festival(Nim博弈模板)

下面是一个二人小游戏:桌子上有M堆扑克牌;每堆牌的数量分别为Ni(i=1…M);两人轮流进行;每走一步可以任意选择一堆并取走其中的任意张牌;桌子上的扑克全部取光,则游戏结束;最后一次取牌的人为胜者。 
现在我们不想研究到底先手为胜还是为负,我只想问大家: 
——“先手的人如果想赢,第一步有几种选择呢?” 

Input

输入数据包含多个测试用例,每个测试用例占2行,首先一行包含一个整数M(1<M<=100),表示扑克牌的堆数,紧接着一行包含M个整数Ni(1<=Ni<=1000000,i=1…M),分别表示M堆扑克的数量。M为0则表示输入数据的结束。 

Output

如果先手的人能赢,请输出他第一步可行的方案数,否则请输出0,每个实例的输出占一行。 

Sample Input

3
5 7 9
0
Sample Output

1

#include<bits/stdc++.h>
using namespace std;

int main()
{
	int n,a[110];
	while(~scanf("%d",&n)&&n)
	{
		int ans=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d",&a[i]);
			ans^=a[i];
		}
		if(ans==0) printf("0\n");//后手赢
		else
		{
			int cnt=0;
			for(int i=0;i<n;i++)
			{
				int k=ans^a[i];
				if(k<a[i]) cnt++;
			}
			printf("%d\n",cnt);
		}
	}
	return 0;
}

SG函数:HDU - 1847 Good Luck in CET-4 Everybody!(博弈论学习--SG函数)

作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的: 
1、  总共n张牌; 
2、  双方轮流抓牌; 
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…) 
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者; 
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢? 
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。 

Good luck in CET-4 everybody! 

Input

输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。

Output

如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。 

Sample Input

1
3
Sample Output

Kiki
Cici
 

解题思路:

SG函数:

        首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

        对于任意状态 x , 定义 SG(x) = mex(S),其中 S 是 x 后继状态的SG函数值的集合。如 x 有三个后继状态分别为 SG(a),SG(b),SG(c),那么SG(x) = mex{SG(a),SG(b),SG(c)}。 这样 集合S 的终态必然是空集,所以SG函数的终态为 SG(x) = 0,当且仅当 x 为必败点P时。

【实例】取石子问题

有1堆n个的石子,每次只能取{ 1, 3, 4 }个石子,先取完石子者胜利,那么各个数的SG值为多少?

SG[0]=0,f[]={1,3,4},

x=1 时,可以取走1 - f{1}个石子,剩余{0}个,所以 SG[1] = mex{ SG[0] }= mex{0} = 1;

x=2 时,可以取走2 - f{1}个石子,剩余{1}个,所以 SG[2] = mex{ SG[1] }= mex{1} = 0;

x=3 时,可以取走3 - f{1,3}个石子,剩余{2,0}个,所以 SG[3] = mex{SG[2],SG[0]} = mex{0,0} =1;

x=4 时,可以取走4-  f{1,3,4}个石子,剩余{3,1,0}个,所以 SG[4] = mex{SG[3],SG[1],SG[0]} = mex{1,1,0} = 2;

x=5 时,可以取走5 - f{1,3,4}个石子,剩余{4,2,1}个,所以SG[5] = mex{SG[4],SG[2],SG[1]} =mex{2,0,1} = 3;

以此类推.....

   x        0  1  2  3  4  5  6  7  8....

SG[x]    0  1  0  1  2  3  2  0  1....

由上述实例我们就可以得到SG函数值求解步骤,那么计算1~n的SG函数值步骤如下:

1、使用 数组f 将 可改变当前状态 的方式记录下来。

2、然后我们使用 另一个数组 将当前状态x 的后继状态标记。

3、最后模拟mex运算,也就是我们在标记值中 搜索 未被标记值 的最小值,将其赋值给SG(x)。

4、我们不断的重复 2 - 3 的步骤,就完成了 计算1~n 的函数值。

认真分析上面的讲解后,对于这道题我们只需稍加修改每次取的值即可。

AC代码:
 

#include<bits/stdc++.h>
using namespace std;
 
int n,a[11],sg[1010];
 
int mex(int x)
{
	if(sg[x]!=-1) return sg[x];//记忆化搜索找sg值 
	int book[1010];
	memset(book,0,sizeof(book));
	for(int i=0;i<11;i++)
	{
		int t=x-a[i];//判断最多能取多少张牌,把每个能取到的都记录下来 
		if(t<0) break;
		sg[t]=mex(t);//找t的sg值 
		book[sg[t]]=1;//标记为了寻找最小的不属于这个集合的非负整数,即下面的mex运算 
	}
	for(int i=0;;i++)
	{
		if(book[i]==0)
		{
			sg[x]=i;
			break;
		}
	}
	return sg[x];
}
 
int main()
{
	a[0]=1;
	for(int i=1;i<=10;i++)
	{
		a[i]=a[i-1]*2;//打表,每次只能取2的次幂张牌 
	}
	while(~scanf("%d",&n)&&n)
	{
		memset(sg,-1,sizeof(sg));//sg值是非负整数 
		if(mex(n)) printf("Kiki\n");//先取者胜利,sg值不为0 
		else printf("Cici\n");//后取者胜利,sg值为0 
	}
	return 0;
}

猜你喜欢

转载自blog.csdn.net/UncleJokerly/article/details/89162395