凸优化第三章凸函数 3.6关于广义不等式的凸性

3.6关于广义不等式的凸性

定义

K\subseteq R^m是一个正常锥,对应的广义不等式\preceq _K,函数f:R^n\rightarrow R^m是K-凸的,如果\forall x,y,\forall \theta \in[0,1],f(\theta x+(1-\theta)y)\preceq _K \theta f(x)+(1-\theta )f(y)

矩阵凸性

设函数f是对称矩阵值函数,即f:R^n\rightarrow S^m,称函数f关于矩阵的不等式是凸的如果\forall x,y,\forall \theta \in [0,1],f(\theta x+(1-\theta)y)\preceq \theta f(x)+(1-\theta)f(y),这种凸性为矩阵凸性。

其等价的定义是对任意的向量z,标量函数z^Tf(x)z都是凸函数。

例子

函数f:S^m\rightarrow S^m,f(X)=X^2S_{+}^{m}凸的

证明:

\forall z\in R^m,z^Tf(X)z=z^TX^2z=z^TX^TXz=(Xz)^T(Xz)=\left \| Xz \right \|_2^2

现证z^Tf(X)z=z^TX^2z=z^TX^TXz=(Xz)^T(Xz)=\left \| Xz \right \|_2^2的凸性

\forall x,y\in S^m,\forall \theta \in[0,1]

z^Tf(\theta x+(1-\theta)y)z=z^T(\theta x+(1-\theta)y)^2z

=z^T(\theta x+(1-\theta)y)^T(\theta x+(1-\theta)y)z

=z^T(\theta ^2x^Tx+(1-\theta)^2y^Ty+2\theta(1-\theta)x^Ty)z

扫描二维码关注公众号,回复: 5130707 查看本文章

=z^T(\theta ^2x^Tx+\theta x^Tx-\theta x^Tx+(1-\theta)^2y^Ty+(1-\theta)y^Ty-(1-\theta)y^Ty+2\theta(1-\theta)x^Ty)z

=z^T(\theta x^Tx+(1-\theta)y^Ty)z+z^T(\theta ^2x^Tx-\theta x^Tx+(1-\theta)^2y^Ty-(1-\theta)y^Ty+2\theta(1-\theta)x^Ty)z

=\theta z^T(x^Tx)z+(1-\theta)z^T(y^Ty)z+z^T((\theta ^2-\theta)x^Tx+((1-\theta)^2-(1-\theta))y^Ty+2\theta(1-\theta)x^Ty)z

=\theta z^T(x^Tx)z+(1-\theta)z^T(y^Ty)z+z^T(\theta(\theta-1)x^Tx+(1-\theta)(1-\theta-1)y^Ty+2\theta(1-\theta)x^Ty)z

=\theta z^T(x^Tx)z+(1-\theta)z^T(y^Ty)z+z^T(\theta(\theta-1)x^Tx-(1-\theta)\theta y^Ty+2\theta(1-\theta)x^Ty)z

=\theta z^T(x^Tx)z+(1-\theta)z^T(y^Ty)z+z^T(\theta(1-\theta)(-x^Tx-y^Ty+2x^Ty))z

因为-x^Tx-y^Ty+2x^Ty\leq 0故上式

\leq \theta z^T(x^Tx)z+(1-\theta)z^T(y^Ty)z=\theta z^Tf(x)z+(1-\theta)z^Tf(y)z

所以函数f:S^m\rightarrow S^m,f(X)=X^2S_{+}^{m}凸的,所以

f(\theta x+(1-\theta)y)\leq \theta f(x)+(1-\theta )f(y)

(\theta x+(1-\theta)y)^2\leq \theta x^2+(1-\theta )y^2

 

猜你喜欢

转载自blog.csdn.net/wangchy29/article/details/86559869
今日推荐