运筹系列17:routing模型之CVRP问题

1. CVRP模型

CVRP指的是有容量(capacity)限制的VRP模型,是最常见的VRP模型。

2. 示例

依旧用上一章节的点,不同的是每个点多了一个送货需求。每辆车的最大容量是15,最小化总运输距离。
dimension可以使用AddDimensionWithVehicleCapacity方法,和AddDimension唯一的区别就是,第三个参数从一个固定值变成了一个列表,表示每一辆车有自己单独的最大容量限制。
在这里插入图片描述

from __future__ import print_function
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2

###########################
# Problem Data Definition #
###########################
def create_data_model():
  """Stores the data for the problem"""
  data = {}
  # Locations in block units
  _locations = \
          [(4, 4), # depot
           (2, 0), (8, 0), # locations to visit
           (0, 1), (1, 1),
           (5, 2), (7, 2),
           (3, 3), (6, 3),
           (5, 5), (8, 5),
           (1, 6), (2, 6),
           (3, 7), (6, 7),
           (0, 8), (7, 8)]

  demands = [0, # depot
             1, 1, # row 0
             2, 4,
             2, 4,
             8, 8,
             1, 2,
             1, 2,
             4, 4,
             8, 8]

  capacities = [15, 15, 15, 15]

  # Multiply coordinates in block units by the dimensions of an average city block, 114m x 80m,
  # to get location coordinates.
  data["locations"] = [(l[0] * 114, l[1] * 80) for l in _locations]
  data["num_locations"] = len(data["locations"])
  data["num_vehicles"] = 4
  data["depot"] = 0
  data["demands"] = demands
  data["vehicle_capacities"] = capacities
  return data
#######################
# Problem Constraints #
#######################
def manhattan_distance(position_1, position_2):
  """Computes the Manhattan distance between two points"""
  return (
      abs(position_1[0] - position_2[0]) + abs(position_1[1] - position_2[1]))
def create_distance_callback(data):
  """Creates callback to return distance between points."""
  _distances = {}

  for from_node in range(data["num_locations"]):
    _distances[from_node] = {}
    for to_node in range(data["num_locations"]):
      if from_node == to_node:
        _distances[from_node][to_node] = 0
      else:
        _distances[from_node][to_node] = (
            manhattan_distance(data["locations"][from_node],
                               data["locations"][to_node]))

  def distance_callback(from_node, to_node):
    """Returns the manhattan distance between the two nodes"""
    return _distances[from_node][to_node]

  return distance_callback

def create_demand_callback(data):
    """Creates callback to get demands at each location."""
    def demand_callback(from_node, to_node):
        return data["demands"][from_node]
    return demand_callback

def add_capacity_constraints(routing, data, demand_callback):
    """Adds capacity constraint"""
    capacity = "Capacity"
    routing.AddDimensionWithVehicleCapacity(
        demand_callback,
        0, # null capacity slack
        data["vehicle_capacities"], # vehicle maximum capacities
        True, # start cumul to zero
        capacity)
###########
# Printer #
###########
def print_solution(data, routing, assignment):
    """Print routes on console."""
    total_dist = 0
    for vehicle_id in range(data["num_vehicles"]):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {0}:\n'.format(vehicle_id)
        route_dist = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = routing.IndexToNode(index)
            next_node_index = routing.IndexToNode(assignment.Value(routing.NextVar(index)))
            route_dist += manhattan_distance(
                data["locations"][node_index],
                data["locations"][next_node_index])
            route_load += data["demands"][node_index]
            plan_output += ' {0} Load({1}) -> '.format(node_index, route_load)
            index = assignment.Value(routing.NextVar(index))

        node_index = routing.IndexToNode(index)
        total_dist += route_dist
        plan_output += ' {0} Load({1})\n'.format(node_index, route_load)
        plan_output += 'Distance of the route: {0}m\n'.format(route_dist)
        plan_output += 'Load of the route: {0}\n'.format(route_load)
        print(plan_output)
    print('Total Distance of all routes: {0}m'.format(total_dist))
########
# Main #
########
def main():
  """Entry point of the program"""
  # Instantiate the data problem.
  data = create_data_model()
  # Create Routing Model
  routing = pywrapcp.RoutingModel(
      data["num_locations"],
      data["num_vehicles"],
      data["depot"])
  # Define weight of each edge
  distance_callback = create_distance_callback(data)
  routing.SetArcCostEvaluatorOfAllVehicles(distance_callback)
# Add Capacity constraint
  demand_callback = create_demand_callback(data)
  add_capacity_constraints(routing, data, demand_callback)
  # Setting first solution heuristic (cheapest addition).
  search_parameters = pywrapcp.RoutingModel.DefaultSearchParameters()
  search_parameters.first_solution_strategy = (
      routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
  # Solve the problem.
  assignment = routing.SolveWithParameters(search_parameters)
  if assignment:
    print_solution(data, routing, assignment)
if __name__ == '__main__':
  main()

输出为:
在这里插入图片描述
结果如下图:
在这里插入图片描述

猜你喜欢

转载自blog.csdn.net/kittyzc/article/details/84314956