数据结构与算法随笔之------堆与优先队列详解

版权声明:欢迎转载,但转载时请注明原文地址 https://blog.csdn.net/weixin_42110638/article/details/83982381

堆与优先队列

1.定义

优先队列

  队列是一个操作受限的线性表,数据只能在一端进入,另一端出来,具有先进先出的性质。有时在队列中需要处理优先级的情况,即后面进入的数据需要提前出来,这里就需要优先队列。优先队列是至少能够提供插入和删除最小值这两种操作的数据结构。对应于队列的操作,插入相当于入队,删除最小相当于出队。 
  链表,二叉查找树,都可以提供插入和删除最小这两种操作。对于链表的实现,插入需要O(1),删除最小需要遍历链表,故需要O(N)。对于二叉查找树,这两种操作都需要O(logN);而且随着不停的删除最小的操作,二叉查找树会变得非常不平衡;同时使用二叉查找树有些浪费,因此很多操作根本不需要。一种较好的实现优先队列的方式是二叉堆(下面简称堆)。 
   

  堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。首先堆是完全二叉树(只有最下面的两层结点度能够小于2,并且最下面一层的结点都集中在该层最左边的若干位置的二叉树),其次任意节点的左右孩子(若有)值都不小于其父亲,这是小根堆,即最小的永远在上面。相反的是大根堆,即大的在上面。 
  因为完全二叉树有很好的规律,因此可以只用数据来存储数据而不需要链表。

二.堆的基本操作

堆的结构定义

typedef struct HNode *Heap; /* 堆的类型定义 */
struct HNode {
    ElementType *Data; /* 存储元素的数组 */
    int Size;          /* 堆中当前元素个数 */
    int Capacity;      /* 堆的最大容量 */
};
typedef Heap MaxHeap; /* 最大堆 */
typedef Heap MinHeap; /* 最小堆 */
 
#define MAXDATA 1000  /* 该值应根据具体情况定义为大于堆中所有可能元素的值 */

堆的创建

MaxHeap CreateHeap( int MaxSize )
{ /* 创建容量为MaxSize的空的最大堆 */
 
    MaxHeap H = (MaxHeap)malloc(sizeof(struct HNode));
    H->Data = (ElementType *)malloc((MaxSize+1)*sizeof(ElementType));
    H->Size = 0;
    H->Capacity = MaxSize;
    H->Data[0] = MAXDATA; /* 定义"哨兵"为大于堆中所有可能元素的值*/
 
    return H;
}

堆的插入(最大)

你一个很自然的想法就是插入到数组的最后,所以

此时没有破坏堆的有序性

此时有序性被破坏,所以交换35与31即可

这个也一个道理,只不过要调整两次

bool Insert( MaxHeap H, ElementType X )
{ /* 将元素X插入最大堆H,其中H->Data[0]已经定义为哨兵 */
    int i;
  
    if ( IsFull(H) ) { 
        printf("最大堆已满");
        return false;
    }
    i = ++H->Size; /* i指向插入后堆中的最后一个元素的位置 */
    for ( ; H->Data[i/2] < X; i/=2 )
        H->Data[i] = H->Data[i/2]; /* 上滤X */
    H->Data[i] = X; /* 将X插入 */
    return true;
}

判满

bool IsFull( MaxHeap H )
{
    return (H->Size == H->Capacity);
}

堆的删除操作(最大)

ElementType DeleteMax( MaxHeap H )
{ /* 从最大堆H中取出键值为最大的元素,并删除一个结点 */
    int Parent, Child;
    ElementType MaxItem, X;
 
    if ( IsEmpty(H) ) {
        printf("最大堆已为空");
        return ERROR;
    }
 
    MaxItem = H->Data[1]; /* 取出根结点存放的最大值 */
    /* 用最大堆中最后一个元素从根结点开始向上过滤下层结点 */
    X = H->Data[H->Size--]; /* 注意当前堆的规模要减小 */
    for( Parent=1; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
 
    return MaxItem;
} 

最大堆的建立

先给代码

/*----------- 建造最大堆 -----------*/
void PercDown( MaxHeap H, int p )
{ /* 下滤:将H中以H->Data[p]为根的子堆调整为最大堆 */
    int Parent, Child;
    ElementType X;
 
    X = H->Data[p]; /* 取出根结点存放的值 */
    for( Parent=p; Parent*2<=H->Size; Parent=Child ) {
        Child = Parent * 2;
        if( (Child!=H->Size) && (H->Data[Child]<H->Data[Child+1]) )
            Child++;  /* Child指向左右子结点的较大者 */
        if( X >= H->Data[Child] ) break; /* 找到了合适位置 */
        else  /* 下滤X */
            H->Data[Parent] = H->Data[Child];
    }
    H->Data[Parent] = X;
}
 
void BuildHeap( MaxHeap H )
{ /* 调整H->Data[]中的元素,使满足最大堆的有序性  */
  /* 这里假设所有H->Size个元素已经存在H->Data[]中 */
 
    int i;
 
    /* 从最后一个结点的父节点开始,到根结点1 */
    for( i = H->Size/2; i>0; i-- )
        PercDown( H, i );
}

思路:

不必将值一个个地插入堆中,通过交换形成堆。假设根的左、右子树都已是堆,并且根的元素名为R。这种情况下,有两种可能:

(1) R的值小于或等于其两个子女,此时堆已完成;

(2) R的值大于其某一个或全部两个子女的值,此时R应与两个子女中值较小的一个交换,结果得到一个堆,除非R仍然大于其新子女的一个或全部的两个。这种情况下,我们只需简单地继续这种将R“拉下来”的过程,直至到达某一个层使它小于它的子女,或者它成了叶结点。

建堆效率

n个结点的堆,高度d =log2n。根为第0层,则第i层结点个数为2i,考虑一个元素在堆中向下移动的距离。大约一半的结点深度为d-1,不移动(叶)。四分之一的结点深度为d-2,而它们至多能向下移动一层。树中每向上一层,结点的数目为前一层的一半,而子树高度加一。

这种算法时间代价为Ο(n)

由于堆有log n层深,插入结点、删除普通元素和删除最小元素的平均时间代价和时间复杂度都是

Ο(log n)。

。。。

猜你喜欢

转载自blog.csdn.net/weixin_42110638/article/details/83982381