斐波那契数列通项公式证明

目录

 

1.生成函数证明:

2. 特征向量方法:


1.生成函数证明:

递归定义为:

F_0=0,  F_1=1F_i=F_{i-1}+F_{i-2}\ \ i\geq2

F_i=\frac{\phi^i-\hat\phi^i}{\sqrt{5}} 其中\phi=\frac{1+\sqrt5}{2}\hat\phi=\frac{1-\sqrt5}{2}

 

假设生成函数为\mathcal{F}(z) = \sum_{i=0}^{\infty}F_i z^i =0+z+z^2+2z^3+3z^4+5z^5+8z^6+.........(1)

其中F_i 是第i 项斐波那契数。

z\mathcal{F}(z) =\sum_{i=0}^{\infty}F_iz^{i+1}=\sum_{i=1}^{\infty}F_{i-1}z^{i+1}

z^2\mathcal{F}(z) =\sum_{i=0}^{\infty}F_iz^{i+2}=\sum_{i=2}^{\infty}F_{i-2}z^{i+1}

z\mathcal{F}(z)+z^2\mathcal{F}(z) =\sum_{i=1}^{\infty}F_{i-1}z^i+\sum_{i=2}^{\infty}F_{i-2}z^i=F_0z^1+\sum_{i=2}^{\infty}F_{i-1}z^i+\sum_{i=2}^{\infty}F_{i-2}z^i=\sum_{i=2}^{\infty}(F_{i-1}+F_{i-2})z^i

有递推公式可知:

\mathcal{F}(z) = 0 +z+z\mathcal{F}(z)+z^2\mathcal{F}(z)

则:

\mathcal{F}(z) =\frac{z}{1-z-z^2}

因式分解:

\mathcal{F}(z)=\frac{1}{\sqrt 5}(\frac{1}{1-\phi z}-\frac{1}{1-\hat\phi z}), where \ \phi=\frac{1+\sqrt 5}{2}, and\ \hat\phi=\frac{1-\sqrt 5}{2} 

泰特展开:

\lim_{x\to 0}\frac{1}{1-x} = 1+x+x^2+x^3+......=\sum_{i=0}^{\infty}x^i

则:

\mathcal{F}(z)=\frac{1}{\sqrt 5}\sum_{i=0}^{\infty}((\phi z)^i-(\hat\phi z)^i)=\sum_{i=0}^{\infty}(\frac{1}{\sqrt 5}(\phi^i-\hat\phi^i))z^i  (2)

结合生成函数定义, 公式(1),可得:

斐波那契数:F_i=\frac{1}{\sqrt 5}(\phi^i-\hat\phi^i)

2. 特征向量方法:

设存在矩阵M使得\left[\begin{matrix}F_n \\ F_{n+1} \end{maxtrix}\right ] =M\left[\begin{matrix}F_{n-1} \\ F_{n} \end{maxtrix}\right ]

M=\left[\begin{matrix}A & B\\ C & D\end{matrix}\right]

\left[\begin{matrix} F_n\\ F_{n-1} \end{matrix}\right] =\left[ \begin{matrix} AF_{n-1}+CF_n \\ BF_n-1+DF_n\end{matrix}\right]

易得:A=0, B=C=D=1符合条件

\left[ \begin{matrix} F_n \\ F_n-1 \end{matrix} \right ] =M \left [ \begin {matrix} F_{n-1} \\ F{n}\end{matrix}\right ] \Rightarrow \left[ \begin{matrix} F_n \\ F_n-1 \end{matrix} \right ] = M^n\left [ \begin {matrix} F_{0} \\ F{1}\end{matrix}\right ]

求解特征方程: det(M-\lambda I) =0,then\ \lambda=\frac{1\pm\sqrt5}{2}

特征向量为:\left[ \begin{matrix} 1\\ \frac{1\pm\sqrt 5}{2} \end{matrix}\right]

由对角化公式:M=PDP^{-1}, 其中D为对角化矩阵

P=\left[ \begin{matrix} 1 & 1 \\ \frac{1+\sqrt 5}{2} & \frac{1-\sqrt 5}{2}\end{matrix} \right]

P^{-1} = \frac{P^*}{|P|}=\left[ \begin{matrix} \frac{1-\sqrt5}{2} &-1 \\-\frac{1+\sqrt 5}{2} & 1 \end{matrix} \right]/(-\sqrt5)

D =P^{-1}MP= -\frac{1}{\sqrt5} \left[\begin{matrix}\frac{1-\sqrt5}{2} & -1 \\ -\frac{1+\sqrt5}{2} & 1 \end{matrix}\right] \left[\begin{matrix}0 & 1 \\ 1 & 1 \end{matrix}\right] \left[\begin{matrix}1& 1 \\ \frac{1+\sqrt5}{2} & \frac{1-\sqrt5}{2}\end{matrix}\right] =\left[\begin{matrix} \frac{1+\sqrt5}{2} & 0 \\ 0 & \frac{1-\sqrt5}{2}\end{matrix}\right]

Then:

\left[ \begin{matrix}F_n \\ F_{n-1} \end{matrix} \right ] = PD^nP^{-1} \left[ \begin{matrix} 0\\1\end{matrix}\right] =\left[ \begin{matrix} 1 & 1 \\ \frac{1+\sqrt 5}{2} & \frac{1-\sqrt 5}{2}\end{matrix} \right]\left[\begin{matrix} \frac{1+\sqrt5}{2} & 0 \\ 0 & \frac{1-\sqrt5}{2}\end{matrix}\right]^n(-\frac{1}{\sqrt5})\left[ \begin{matrix} \frac{1-\sqrt5}{2} &-1 \\-\frac{1+\sqrt 5}{2} & 1 \end{matrix} \right]\left[ \begin{matrix} 0\\1\end{matrix}\right]

=( \frac{1}{\sqrt5})\left [ \begin{matrix} (\frac{1+\sqrt5}{2})^n -(\frac{1-\sqrt5}{2})^n\\ (\frac{1+\sqrt5}{2})^{n+1} -(\frac{1-\sqrt5}{2})^{n+1}\end{matrix}\right]

则: F_i=\frac{1}{\sqrt 5}(\phi^i-\hat\phi^i)

猜你喜欢

转载自blog.csdn.net/u010622506/article/details/83005046