(数论)51NOD 1073 约瑟夫环

N个人坐成一个圆环(编号为1 - N),从第1个人开始报数,数到K的人出列,后面的人重新从1开始报数。问最后剩下的人的编号。
例如:N = 3,K = 2。2号先出列,然后是1号,最后剩下的是3号。
Input
2个数N和K,表示N个人,数到K出列。(2 <= N, K <= 10^6)
Output
最后剩下的人的编号
Input示例
3 2
Output示例
3
解:

 1 #include <stdio.h>
 2 int main()
 3 {
 4     int n, k;
 5     while (scanf_s("%d%d", &n, &k) != EOF)
 6     {
 7         int move = 0;
 8         for (int i = 2; i <= n; i++) move = (move + k) % i;
 9         printf("%d\n", move + 1);
10     }
11 }    

首先,我是从正向思考,即找出每次去掉的元素,并标记,循环n-1次,最后找到未标记的元素即可。这个思路简单,但实现却麻烦。
然后,是用链表的删改来完成游戏成员的淘汰,删除n-1个节点,最后剩余的就是winner。但这仍不够简单。
最后,注意到约瑟夫环的环状结构的特性,使我们可以利用当k为相同值时,n-1个人玩游戏和n个人玩游戏存在的数学关系解决问题。
这种数学关系简单叙述如下:
n个人玩游戏,k为常数,定义f(n)为n人游戏时的胜利者编号。第一轮淘汰者为(k-1)%n+1(为什么不是k%n?注意取模运算的范围为[0,n-1],考虑k=n的情况),之后我们可以将(k-1)%n+2作为新的排头head,(k-1)%n为尾tail,以另一种方式展开这个环。
由于head=1,tail=n-1时,winner=f(n-1),
则head=(k-1)%n+2,tail=(k-1)%n时,winner=winner+(k-1)%n+1。(考虑到加法中可能存在的“溢出”问题,将公式标准化如下)

winner=f(n-1)+(k-1)%n+1-1)%n+1=(f(n-1)+(k-1)%n)%n+1=(f(n-1)+k-1)%n+1。

所以我们得到递推公式如下:
定义f(n)为n人游戏时的胜利者编号,k由题目定义,
则 f(1)=1;
  f(n)=(f(n-1)+k-1)%n+1;
由于取模运算的范围包括零,所以我们在运算前要-1,运算后要+1。那我们可不可以将这个步骤省略呢?
我们需要改变f(n)的定义,即将f(n)定义为f(n)-1(其实这时候的f(n)可以理解为偏移量,它的值代表的是n人游戏时获胜者的相对于零位置的位置),
所以递推公式化简为:f(1)=0;
          f(n)=(f(n-1)+k)%n;(最终答案不要忘记+1!)

猜你喜欢

转载自www.cnblogs.com/Ekalos-blog/p/9668423.html