借助比例因子简化运算

  • 常用的勾股数:\(3n,4n,5n(n\in N^*)\)\(5,12,13\)\(7,24,25\)\(8,15,17\)\(9,40,41\)

  • 连比形式或比例形式,可以引入非零比例因子简化运算:

  • 如三角形的三边之比为\(a:b:c=2:3:4\),则可以设\(a=2k,b=3k,c=4k(k>0)\)

  • 同样的思路也可以用到圆锥曲线中,比如已知离心率\(e=\cfrac{c}{a}=\sqrt{3}\),则可知\(c=\sqrt{3}t,a=t(t>0)\) ,则有\(b=\sqrt{2}t\)

  • \(\Delta ABC\)中,给定\(\cfrac{a}{cosA}=\cfrac{b}{cosB}=\cfrac{c}{cosC}\),若令\(\cfrac{a}{cosA}=\cfrac{b}{cosB}=\cfrac{c}{cosC}=k\)

则有\(cosA=\cfrac{a}{k}\)\(cosB=\cfrac{b}{k}\)\(cosC=\cfrac{c}{k}\)

再结合\(sinA=\cfrac{a}{2R}\)\(sinB=\cfrac{b}{2R}\)\(sinC=\cfrac{c}{2R}\)

故有\(tanA=tanB=tanC=\cfrac{k}{2R}\),故\(A=B=C=\cfrac{\pi}{3}\)

  • 设等比数列\(\{a_n\}\)的前\(n\)项的和为\(S_n\),若\(\cfrac{S_6}{S_3}=\cfrac{1}{2}\),则\(\cfrac{S_9}{S_6}\)=?

分析:引入比例因子,设\(\cfrac{S_6}{S_3}=\cfrac{1}{2}=\cfrac{k}{2k}(k\neq 0)\),则\(S_6=k\)\(S_3=2k\)

\(S_6-S_3=-k\),由\(S_3,S_6-S_3,S_9-S_6\)成等比数列,可知\(S_9-S_6=\cfrac{k}{2}\)

\(S_9=\cfrac{3k}{2}\),故\(\cfrac{S_9}{S_6}=\cfrac{\cfrac{3k}{2}}{2k}=\cfrac{3}{4}\)

  • 已知\(a:b:c=2:3:4\),引入非零因子\(k\),则可以这样表达,\(a=2k,b=3k,c=4k\),可以看成\(a,b,c\)都是\(k\)的一元函数了。

  • (2017全国卷1理科第11题)已知\(2^x=3^y=5^z\),比较\(2x、3y、5z\)的大小;

分析:令\(2^x=3^y=5^z=k\),则\(x=log_2k=\cfrac{lgk}{lg2}\)\(y=log_3k=\cfrac{lgk}{lg3}\)\(z=log_5k=\cfrac{lgk}{lg5}\)

\(2x=\cfrac{2lgk}{lg2}=\cfrac{lgk}{\cfrac{1}{2}lg2}=\cfrac{lgk}{lg\sqrt{2}}\)\(3y=\cfrac{3lgk}{lg3}=\cfrac{lgk}{\cfrac{1}{3}lg3}=\cfrac{lgk}{lg\sqrt[3]{3}}\)\(5z=\cfrac{5lgk}{lg5}=\cfrac{lgk}{\cfrac{1}{5}lg5}=\cfrac{lgk}{lg\sqrt[5]{5}}\),接下来,

法1:(单调性法)转化为只需要比较\(\sqrt[2]{2}\)\(\sqrt[3]{3}\)\(\sqrt[5]{5}\)三者的大小即可。

先比较\(\sqrt[2]{2}\)\(\sqrt[3]{3}\),给两个式子同时6次方,

得到\((\sqrt[2]{2})^6=2^3=8\)\((\sqrt[3]{3})^6=3^2=9\)

\(\sqrt[2]{2}<\sqrt[3]{3}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}>\cfrac{lgk}{lg\sqrt[3]{3}}\)

即得到\(2x>3y\)

再比较\(\sqrt[2]{2}\)\(\sqrt[5]{5}\),给两个式子同时10次方,

得到\((\sqrt[2]{2})^{10}=2^5=32\)\((\sqrt[5]{5})^{10}=5^2=25\)

\(\sqrt[2]{2}>\sqrt[5]{5}\),则\(\cfrac{lgk}{lg\sqrt[2]{2}}<\cfrac{lgk}{lg\sqrt[3]{3}}\)

即得到\(5z>2x\),综上得到\(3y<2x<5z\)

法2:(作差法)

\(2x-3y=\cfrac{2lgt}{lg2}-\cfrac{3lgt}{lg3}=\cfrac{lgt(2lg3-3lg3)}{lg2lg3}=\cfrac{lgt(lg9-lg8)}{lg2lg3}>0\)

\(2x>3y\);

\(2x-5z=\cfrac{2lgt}{lg2}-\cfrac{5lgt}{lg5}=\cfrac{lgt(2lg5-5lg2)}{lg2lg5}=\cfrac{lgt(lg25-lg32)}{lg2lg5}<0\)

\(2x<5z\);

综上有\(3y<2x<5z\)

法3:(作商法)

\(\cfrac{2x}{3y}=\cfrac{2}{3}\cdot \cfrac{lg3}{lg2}=\cfrac{lg9}{lg8}=log_89>1\),故\(2x>3y\)

\(\cfrac{5z}{2x}=\cfrac{5}{2}\cdot \cfrac{lg2}{lg5}=\cfrac{lg2^5}{lg5^2}=log_{25}32>1\)

\(5z>2x\);故\(3y<2x<5z\)素材链接

\(\fbox{例5}\)已知\(a,b>0\),且满足\(2+log_2a=3+log_3b=log_6(a+b)\),求\(\cfrac{1}{a}+\cfrac{1}{b}\)的值;

分析:引入正数因子\(k\)

\(2+log_2a=3+log_3b=log_6(a+b)=k(k>0)\)

则由\(2+log_2a=log_24a=k\)

得到\(4a=2^k\),即\(a=\cfrac{2^k}{2^2}=2^{k-2}\)

\(3+log_3b=log_327b=k\)

得到\(27b=3^k\),即\(b=\cfrac{3^k}{3^3}=3^{k-3}\)

\(log_6(a+b)=k\)

得到\(a+b=6^k\)

\(\cfrac{1}{a}+\cfrac{1}{b}=\cfrac{a+b}{ab}\)

\(=\cfrac{6^k}{2^{k-2}\cdot 3^{k-3}}\)

\(=\cfrac{2^k\cdot 3^k}{2^k\cdot 2^{-2}\cdot 3^k\cdot 3^{-3}}\)

\(=\cfrac{1}{2^{-2}\cdot 3^{-3}}\)

\(=2^2\cdot 3^3=108\)

猜你喜欢

转载自www.cnblogs.com/wanghai0666/p/8358052.html