bounding box的简单理解

1. 小吐槽

OverFeat是我看的第一篇深度学习目标检测paper,因为它是第一次用深度学习来做定位、目标检测问题。可是,很难懂。。。那个bounding box写得也太简单了吧。虽然,很努力地想理解还找了很多博客、论文什么。后来,还是看RCNN,总算有点理解。

2. 对bounding box的误解

我一直以为卷积网络最后可以得到四个值:分别表示学习到的bounding box坐标,然后回归的目标是将这四个坐标与ground truth的四个坐标进行比较回归。其实不是这样的!正文如下

3. bounding box

(1) 一开始会有预测的边框值输入。原来的分类问题只是输入一张图,但是现在对于输入的图还有它在原图中的位置信息。比如滑动窗口、RCNN中selective search给出的区域提案等,产生用于分类判断的区域$P$

(2) 输入的图会通过卷积网络学习提取出特征向量$\phi_5(P)$

(3) 目标检测的一个目标是希望最后的bounding box(P)和ground truth(G)一致,但是实现方法并不是学习坐标,而是学习变形比例:包括两个部分,一个是对边框(x, y)进行移动,一个是对边框大小(w, h)进行缩放

  • 假设原来的bounding box为P(x, y, w, h),ground truth G(x, y, w, h)
  • 直观的变形计算为

$\hat{G}_x = P_x + d_x\\ \hat{G}_y = P_y + d_y\\ \hat{G}_w = P_w * d_w\\ G_h'=P_h * d_h$

  • RCNN中给出的变形转换关系

$\hat{G}_x = P_wd_x(P) + P_x\\ \hat{G}_y = P_hd_y(P) + P_y\\ \hat{G}_w = P_wexp(d_w(P))\\ \hat{G}_h = P_hexp(d_h(P))$

所以目标是要计算得到$d_x(P),d_y(P),d_w(P),d_h(P)$四个参数

  • 把这几个写成学习到的特征向量$\phi_5(P)$的线性关系

$d_*(P) = w_*^T\phi_5(P)$

目标变成学习$w_*^T$参数

  • 学习的目标

$w_*=\underset{argmin}{\hat{w}_*}\sum_i^N(t^i_*-\hat{w}^T_*\phi_5(P^i))^2+\lambda||\hat{w}_*||^2$

其中$t_*^i$和上面定义的转换关系中的$d_*^i$是对应的,也就是

$t_x=(G_x-P_x)/P_w\\ t_y = (G_y-P_y)/P_h\\t_w=log(G_w/P_w)\\t_h=log(G_h/P_h)$

  • 如何学习

回归问题

4. 总结

不懂的问题不要一直在一个地方一直想,还是要多去看看其它相关的。一个看不懂就再看一个。有时主观的下意识的理解会有偏差,然后就很难去接受新的,没法跳出误区

如果有哪里写得不对,还请多多指教,还没有看代码实现,其实自己也不是完全确定 ̄□ ̄||

猜你喜欢

转载自www.cnblogs.com/coolqiyu/p/9445673.html
今日推荐