手写数字识别 MNIST

预处理

  • tensorflow库内包含mnist,直接加载mnist数据并转为一维数组形式。直接加载的是.gz格式。
import tensorflow.examples.tutorials.mnist.input_data as input_data  # 加载mnist数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # one_hot为是否将标签转为一维数组形式

逻辑回归

  • 加载数据
  • 图片转为一维数组
  • 建立模型:softmax回归模型
  • w为可变n*784二维矩阵,b为10数组
  • w、b变量初始化为0
  • y=w*x+b
  • 损失函数:交叉熵
  • 训练模型
  • 模型评估
# -*- coding: utf-8 -*-


# 读取数据图片,预处理
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data  # 加载mnist数据
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # one_hot为是否将标签转为一维数组形式


# 构建softmax回归模型
sess = tf.InteractiveSession()  # 交互作用类(不需用在计算前构建整个图)


# 占位符(x和y_)
x = tf.placeholder("float", shape=[None, 784])  # 浮点数,二维数组(第一维大小不定,第二维是784)
y_ = tf.placeholder("float", shape=[None, 10])  # 用于代表对应某一MNIST图片的类别


# 变量(w权重和b偏置)
w = tf.Variable(tf.zeros([784, 10]))  # 784*10的可变参数值二维矩阵
b = tf.Variable(tf.zeros([10]))  # 10维的向量
sess.run(tf.initialize_all_variables())  # 初始化所有变量为0


# 类别预测与损失函数
y = tf.nn.softmax(tf.matmul(x, w) + b)  # 计算每个分类的softmax概率值
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))  # 损失函数(目标类别和预测类别之间的交叉熵)


# 训练模型
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)  # 最速下降法,步长为0.01
for i in range(1000):
    batch = mnist.train.next_batch(50)  # 每步加载50个样本
    train_step.run(feed_dict={x: batch[0], y_: batch[1]})  # feed_dict被每次训练的数据替代


# 模型评估
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))  # 检测预测值与实际值是否匹配
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))  # 将布尔数组转化为正确率
print(accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))  # 输出最终正确率

神经网络

  • 加载数据集
  • 定义函数:
    • 初始化函数
    • 神经元模型:mlp、逻辑回归、s函数
  • 照片转一维数组、确定测试、训练的照片、标签
  • 占位符:定义张量
  • 调用神经元模型函数
  • 计算代价函数、构造优化器、求行最值
  • 初始化变量、迭代100次
  • 打印正确率
# -*- coding: utf-8 -*-


# 神经网络
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data  # 加载数据


def init_weight(shape):  # 初始化
    return tf.Variable(tf.random_normal(shape, stddev=0.01))  # (stddev是标准差,random_normal是正态分布的随机输出值)张量的可变随机值


def model(X, w_h, w_o):  # 神经元模型
    h = tf.nn.sigmoid(tf.matmul(X, w_h))  # 这是一个基本的mlp,两个堆栈逻辑回归  # X和w_h矩阵相乘,s函数
    return tf.matmul(h, w_o)  # 在最后不使用softmax,因为代价函数  # 返回h和w_o的两矩阵之积


mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # 把数据转换为一位数组的格式
trX = mnist.train.images  # 训练的图片
trY = mnist.train.labels  # 训练的标签
teX = mnist.test.images  # 测试的图片
teY = mnist.test.labels  # 测试的标签


# 占位符
X = tf.placeholder("float", [None, 784])  # 第一维长度不定,第二维长度为784的二维矩阵 浮点数 784=28*28
Y = tf.placeholder("float", [None, 10])  # 输出的10种情况


w_h = init_weight([784, 625])  # 创建特征变量  # 调用上边自定义的函数,对矩阵进行初始化
w_o = init_weight([625, 10])  # 初始化


py_x = model(X, w_h, w_o)  # 调用上边的自定义函数,


cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))  # 计算代价
train_op = tf.train.GradientDescentOptimizer(0.05).minimize(cost)  # 构造优化器  # 0.05的学习率使代价函数最小
predict_op = tf.argmax(py_x, 1)  # 求行中最大值


# 在会话中启动图表
with tf.Session() as sess:
    # 初始化所有变量
    tf.global_variables_initializer().run()  # 添加用于初始化变量的节点,

    for i in range(100):  # 迭代100次
        for start, end in zip(range(0, len(trX)), range(128, len(trX)+1, 128)):  # zip函数是将两个列表打包为元组的列表,元素个数与最短列表一致
            sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start:end]})  # 跑
        print(i, np.mean(np.argmax(teY, axis=1) ==
                         sess.run(predict_op, feed_dict={X: teX})))  # mean函数是求平均值,打印预测和实际相同时的概率

    # for i in range(100):
    #     for start, end in zip(range(0, 1000), range(128, 1000+1, 128)):
    #         sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start:end]})
    #     print(i, np.mean(np.argmax(teY, axis=1) ==
    #                      sess.run(predict_op, feed_dict={X: teX})))

卷积神经网络

  • CNN
    • 输入层
    • 卷积层
    • 激活函数
    • 池化层
    • 全连接层

卷积就是为了降维

池化就是数据压缩,特征压缩(提取主要特征)

  • 加载数据
  • 定义初始化函数、定义模型函数(relu、max_pool、dropout)
  • 图片转一维数组
  • 张量、初始化
  • 调用模型函数
  • 训练的下降率
  • argmax
  • 迭代10次
  • 测试集是打乱的(np.random.shuffle)
  • 打印准确率
# -*- coding: utf-8 -*-
#
#
# # # 读取数据图片,预处理
# # import tensorflow as tf
# # import tensorflow.examples.tutorials.mnist.input_data as input_data  # 加载mnist数据
# # mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # one_hot为是否将标签转为一维数组形式
#
#
# # 构建一个多层卷积神经网络
# import tensorflow as tf
#
#
# # 权重初始化
# def weight_variable(shape):  # 权重
#     initial = tf.truncated_normal(shape, stddev=0.01)
#     return tf.Variable(initial)
#
#
# def bias_variable(shape):  # 偏置
#     initial = tf.constant(0.1, shape=shape)
#     return tf.Variable(initial)
#
#
# # 卷积和池化
# def conv2d(x, W):
#     return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')  # 1步长的卷积,0边距的模板(用0填充边界)
#
#
# def max_pool_2x2(x):  # 池化使用2*2的模板
#     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
#                           strides=[1, 2, 2, 1], padding='SAME')
#
#
# # 第一层卷积
# W_conv1 = weight_variable([5, 5, 1, 32])  # 卷积在每个5*5的patch中算出32个特征
# b_conv1 = bias_variable([32])  # 每个输出的通道都有一个的对应的偏置量
#
# x_image = tf.reshape(x, [-1, 28, 28, 1])  # x变为一个4d向量,第2、3维是图片的宽、高,第4维是图片的颜色通道数
#
# h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)  # 把x_image和权值向量进行卷积,加上偏置项,然后使用RELU函数
# h_pool1 = max_pool_2x2(h_conv1)  # 最后进行max_pooling(四个像素点中选取最大的)
#
#
# # 第二层卷积
# W_conv2 = weight_variable([5, 5, 32, 64])  # 每个5*5的patch中算出64个特征
# b_conv2 = bias_variable([64])
#
# h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
# h_pool2 = max_pool_2x2(h_conv2)
#
#
# # 密集层网络
# W_fc1 = weight_variable([7*7*64, 1024])  # 图片尺寸减少到了7*7,加入一个有1024个神经元的全连接层
# b_fc1 = bias_variable([1024])
#
# h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])  # 把池化层输出的张量reshape为一些向量
# h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)  # 乘上权重矩阵,加上偏置,然后使用RELU
#
#
# # Droput(减少过拟合)
# keep_prob = tf.placeholder("float")  # 训练中启用dropout,测试中关闭的dropout
# h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
#
#
# # 输出层(添加一个softmax层)
# W_fc2 = weight_variable([1024, 10])
# b_fc2 = bias_variable([10])
#
# y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)  # softmax函数
#
#
# # 训练和模型评估(ADAM优化器做梯度下降,每100次迭代输出一次日志)
# cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
# train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
# sess.run(tf.initialize_all_variables())
# for i in range(20000):
#     batch = mnist.train.next_batch(50)
#     if i % 100 == 0:
#         train_accuracy = accuracy.eval(feed_dict={
#             x: batch[0], y_: batch[1], keep_prob: 1.0
#         })
#         print('step %d, training accuracy %g' % i, train_accuracy)
#     train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
#
# print('test accuracy %g' % accuracy.eval(feed_dict={
#     x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0
# }))
#
#
# ----------------------------------------------------------------------------------------------------------------------
#
# # # -*- coding: utf-8 -*-
#
#
# import tensorflow as tf
# import numpy as np
# from tensorflow.examples.tutorials.mnist import input_data
#
#
# batch_size = 128
# test_size = 256
#
#
# def init_weights(shape):
#     return tf.Variable(tf.random_normal(shape, stddev=0.01))
#
#
# def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):
#     l1a = tf.nn.relu(tf.nn.conv2d(X, w,
#                                   strides=[1, 1, 1, 1], padding='SAME'))
#     l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1],
#                         strides=[1, 2, 2, 1], padding='SAME')
#     l1 = tf.nn.dropout(l1, p_keep_conv)
#
#     l2a = tf.nn.relu(tf.nn.conv2d(l1, w2,
#                                   strides=[1, 1, 1, 1], padding='SAME'))
#     l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1],
#                         strides=[1, 2, 2, 1], padding='SAME')
#     l2 = tf.nn.dropout(l2, p_keep_conv)
#
#     l3a = tf.nn.relu(tf.nn.conv2d(l2, w3,
#                                   strides=[1, 1, 1, 1], padding='SAME'))
#     l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1],
#                         strides=[1, 2, 2, 1], padding='SAME')
#     l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]])
#     l3 = tf.nn.dropout(l3, p_keep_conv)
#
#     l4 = tf.nn.relu(tf.matmul(l3, w4))
#     l4 = tf.nn.dropout(l4, p_keep_conv)
#
#     pyx = tf.matmul(l4, w_o)
#     return pyx
#
#
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels
# trX = trX.reshape(-1, 28, 28, 1)
# teX = teX.reshape(-1, 28, 28, 1)
#
#
# X = tf.placeholder("float", [None, 28, 28, 1])
# Y = tf.placeholder("float", [None, 10])
#
#
# w = init_weights([3, 3, 1, 32])
# w2 = init_weights([3, 3, 32, 64])
# w3 = init_weights([3, 3, 64, 128])
# w4 = init_weights([128 * 4 * 4, 625])
# w_o = init_weights([625, 10])
#
#
# p_keep_conv = tf.placeholder("float")
# p_keep_hidden = tf.placeholder("float")
# py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)
#
#
# cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))
# train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)
# predict_op = tf.argmax(py_x, 1)
#
#
# #
# with tf.Session() as sess:
#     #
#     tf.global_variables_initializer().run()
#
#     for i in range(10):
#         train_batch = zip(range(0, len(trX), batch_size),
#                           range(batch_size, len(trX) + 1, batch_size))
#         for start, end in train_batch:
#             sess.run(train_op, feed_dict={X: trX[start: end], Y: trY[start: end],
#                                           p_keep_conv: 0.8, p_keep_hidden: 0.5})
#
#             test_indices = np.arange(len(teX))
#             np.random.shuffle(test_indices)
#             test_indices = test_indices[0:test_size]
#
#             print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
#                              sess.run(predict_op, feed_dict={X: teY[test_indices],
#                                                              Y: teY[test_indices],
#                                                              p_keep_conv: 1.0,
#                                                              p_keep_hidden: 1.0})))


# ----------------------------------------------------------------------------------------------------------------------


import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data  # 加载数据

batch_size = 128
test_size = 256


def init_weights(shape):  # 初始化
    return tf.Variable(tf.random_normal(shape, stddev=0.01))


def model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden):  # 定义的模型函数
    l1a = tf.nn.relu(tf.nn.conv2d(X, w,
                                  strides=[1, 1, 1, 1], padding='SAME'))  # l1a shape=(?, 28, 28, 32)
    l1 = tf.nn.max_pool(l1a, ksize=[1, 2, 2, 1],              # l1 shape=(?, 14, 14, 32)
                        strides=[1, 2, 2, 1], padding='SAME')
    l1 = tf.nn.dropout(l1, p_keep_conv)

    l2a = tf.nn.relu(tf.nn.conv2d(l1, w2,
                                  strides=[1, 1, 1, 1], padding='SAME'))  # l2a shape=(?, 14, 14, 64)
    l2 = tf.nn.max_pool(l2a, ksize=[1, 2, 2, 1],              # l2 shape=(?, 7, 7, 64)
                        strides=[1, 2, 2, 1], padding='SAME')
    l2 = tf.nn.dropout(l2, p_keep_conv)

    l3a = tf.nn.relu(tf.nn.conv2d(l2, w3,
                                  strides=[1, 1, 1, 1], padding='SAME'))  # l3a shape=(?, 7, 7, 128)
    l3 = tf.nn.max_pool(l3a, ksize=[1, 2, 2, 1],              # l3 shape=(?, 4, 4, 128)
                        strides=[1, 2, 2, 1], padding='SAME')
    l3 = tf.reshape(l3, [-1, w4.get_shape().as_list()[0]])    # reshape to (?, 2048)
    l3 = tf.nn.dropout(l3, p_keep_conv)

    l4 = tf.nn.relu(tf.matmul(l3, w4))
    l4 = tf.nn.dropout(l4, p_keep_hidden)

    pyx = tf.matmul(l4, w_o)
    return pyx


mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)  # 将照片转一维数组
trX, trY, teX, teY = mnist.train.images, mnist.train.labels, mnist.test.images, mnist.test.labels  # 定义训练、测试的图片、属性
trX = trX.reshape(-1, 28, 28, 1)  # 28x28x1 input img
teX = teX.reshape(-1, 28, 28, 1)  # 28x28x1 input img


X = tf.placeholder("float", [None, 28, 28, 1])  # 张量 浮点数 4维矩阵
Y = tf.placeholder("float", [None, 10])


w = init_weights([3, 3, 1, 32])       # 3x3x1 conv, 32 outputs
w2 = init_weights([3, 3, 32, 64])     # 3x3x32 conv, 64 outputs
w3 = init_weights([3, 3, 64, 128])    # 3x3x32 conv, 128 outputs
w4 = init_weights([128 * 4 * 4, 625])  # FC 128 * 4 * 4 inputs, 625 outputs
w_o = init_weights([625, 10])         # FC 625 inputs, 10 outputs (labels)


p_keep_conv = tf.placeholder("float")  # 卷积核多项式乘法
p_keep_hidden = tf.placeholder("float")  # 隐藏的
py_x = model(X, w, w2, w3, w4, w_o, p_keep_conv, p_keep_hidden)  # 调用模型函数


cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=py_x, labels=Y))  # 准确率
train_op = tf.train.RMSPropOptimizer(0.001, 0.9).minimize(cost)  # 训练的下降率
predict_op = tf.argmax(py_x, 1)  # 求行中最大


#
with tf.Session() as sess:
    # 初始化所有可变值
    tf.global_variables_initializer().run()  # 跑

    for i in range(10):  # 迭代10次
        training_batch = zip(range(0, len(trX), batch_size),
                             range(batch_size, len(trX)+1, batch_size))  # 训练批次
        for start, end in training_batch:  # 训练
            sess.run(train_op, feed_dict={X: trX[start:end], Y: trY[start:end],
                                          p_keep_conv: 0.8, p_keep_hidden: 0.5})

        test_indices = np.arange(len(teX))  # 得到一个测试批
        np.random.shuffle(test_indices)  # 打乱测试集
        test_indices = test_indices[0:test_size]

        print(i, np.mean(np.argmax(teY[test_indices], axis=1) ==
                         sess.run(predict_op, feed_dict={X: teX[test_indices],
                                                         Y: teY[test_indices],
                                                         p_keep_conv: 1.0,
                                                         p_keep_hidden: 1.0})))  # 打印预准率

猜你喜欢

转载自blog.csdn.net/zhangyu4863/article/details/81148519