Logistic回归及梯度上升算法

逻辑回归

逻辑回归可以用来进行回归与分类,两者仅有略微不同,主体算法是一样的,本文以分类进行讲解。如下图二分类问题,我们希望找到一个直线(高维空间为超平面)来将数据划分开。

这里写图片描述
这里写图片描述
这里写图片描述

梯度上升

有了以上的逻辑回归的理论基础,下面我们编程实现这一步骤。就以第一张图的样本为例进行,样本维数为2维,采用梯度上升算法进行迭代。
迭代步数自己选择

批量梯度上升

批量梯度上升每进行一次迭代更新就会计算所有样本,因此得到的模型正确率比较高,但同时计算复杂度高,算法耗时。计算过程如下:

这里写图片描述
这里写图片描述

代码如下

import numpy as np
import re
from pandas import DataFrame
import time as time
import matplotlib.pyplot as plt
import math

def get_data(filename):                 #读取数据
    f = open(filename)
    data = DataFrame(columns=['x0','x1','x2','label']) #构造DataFrame存放数据,列名为x与y
    line = f.readline()
    line = line.strip()
    p = re.compile(r'\s+')              #由于数据由若干个空格分隔,构造正则表达式分隔
    while line:
        line = line.strip()
        linedata = p.split(line)
        data.set_value(len(data),['x0','x1','x2','label'],[1,float(linedata[0]),float(linedata[1]),int(linedata[2])]) #数据存入DataFrame
        line = f.readline()
    return np.array(data.loc[:,['x0','x1','x2']]),np.array(data['label'])
def sigmoid(x):
    return 1.0/(1+np.exp(-x))
def stocGradAscent(dataMat,labelMat,alpha = 0.01):   #随机梯度上升
    start_time = time.time()                         #记录程序开始时间
    m,n = dataMat.shape
    weights = np.ones((n,1))                         #分配权值为1
    for i in range(m):
        h = sigmoid(np.dot(dataMat[i],weights).astype('int64')) #注意:这里两个二维数组做内积后得到的dtype是object,需要转换成int64
        error = labelMat[i]-h                        #误差
        weights = weights + alpha*dataMat[i].reshape((3,1))*error #更新权重
    duration = time.time()-start_time
    print('time:',duration)
    return weights
def gradAscent(dataMat,labelMat,alpha = 0.01,maxstep = 1000): #批量梯度上升
    start_time = time.time()
    m,n = dataMat.shape
    weights = np.ones((n,1))
    for i in range(maxstep):
        h = sigmoid(np.dot(dataMat,weights).astype('int64'))  #这里直接进行矩阵运算
        labelMat = labelMat.reshape((100,1))                  #label本为一维,转成2维
        error = labelMat-h                                    #批量计算误差
        weights = weights + alpha*np.dot(dataMat.T,error)     #更新权重
    duration = time.time()-start_time
    print('time:',duration)
    return weights
def betterStoGradAscent(dataMat,labelMat,alpha = 0.01,maxstep = 150):
    start_time = time.time()
    m,n = dataMat.shape
    weights = np.ones((n,1))
    for j in range(maxstep):
        for i in range(m):
            alpha = 4/(1+i+j) + 0.01                         #设置更新率随迭代而减小
            h = sigmoid(np.dot(dataMat[i],weights).astype('int64'))
            error = labelMat[i]-h
            weights = weights + alpha*dataMat[i].reshape((3,1))*error
    duration = time.time()-start_time
    print('time:',duration)
    return weights
def show(dataMat, labelMat, weights):
    #dataMat = np.mat(dataMat)
    #labelMat = np.mat(labelMat)
    m,n = dataMat.shape
    min_x = min(dataMat[:, 1])
    max_x = max(dataMat[:, 1])
    xcoord1 = []; ycoord1 = []
    xcoord2 = []; ycoord2 = []
    for i in range(m):
        if int(labelMat[i]) == 0:
            xcoord1.append(dataMat[i, 1]); ycoord1.append(dataMat[i, 2])
        elif int(labelMat[i]) == 1:
            xcoord2.append(dataMat[i, 1]); ycoord2.append(dataMat[i, 2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcoord1, ycoord1, s=30, c="red", marker="s")
    ax.scatter(xcoord2, ycoord2, s=30, c="green")
    x = np.arange(min_x, max_x, 0.1)
    y = (-float(weights[0]) - float(weights[1])*x) / float(weights[2])
    ax.plot(x, y)
    plt.xlabel("x1"); plt.ylabel("x2")
    plt.show()

if __name__=='__main__':
    dataMat,labelMat = get_data('data1.txt')
    weights = gradAscent(dataMat,labelMat)
    show(dataMat,labelMat,weights)

效果

随机梯度:

这里写图片描述

批量梯度:

这里写图片描述

改进的随机梯度: 实际就是进行多次随机梯度,学习率随着迭代步数而减小。

这里写图片描述

猜你喜欢

转载自blog.csdn.net/qq_29462849/article/details/80752511