空间金字塔池化(SPP,Spatial Pyramid Pooling)系列

空间金字塔池化的作用是解决输入图片大小不一造成的缺陷,同时在目标识别中增加了精度。空间金字塔池化可以使得任意大小的特征图都能够转换成固定大小的特征向量,下面针对一些典型的空间金字塔进行盘点。

部分图片来自blog:空间金字塔池化改进 SPP / SPPF / SimSPPF / ASPP / RFB / SPPCSPC / SPPFCSPC_金字塔池化模块-CSDN博客, 侵删

(1)SPP, Spatial Pyramid Pooling

paper:Spatial Pyramid Pooling in Deep ConvolutionalNetworks for Visual Recognition

paper link: https://arxiv.org/abs/1406.4729

repo link: https://github.com/yifanjiang19/sppnet-pytorch

核心思想

把经典的金字塔池化结构Spatial Pyramid Pooling引入CNN中,从而使CNN可以处理任意尺寸的图片

框架

具有空间金字塔池化层的网络结构。这里256是conv5层的卷积核个数,conv5是最后一个卷积层。

code_pytorch

import math
import torch
import torch.nn as nn
from torch.nn import init
import functools
from torch.autograd import Variable
import numpy as np
import torch.nn.functional as F
class SPP_NET(nn.Module):
    '''
    A CNN model which adds spp layer so that we can input multi-size tensor
    '''
    def __init__(self, opt, input_nc, ndf=64,  gpu_ids=[]):
        super(SPP_NET, self).__init__()
        self.gpu_ids = gpu_ids
        self.output_num = [4,2,1]
        
        self.conv1 = nn.Conv2d(input_nc, ndf, 4, 2, 1, bias=False)
        
        self.conv2 = nn.Conv2d(ndf, ndf * 2, 4, 1, 1, bias=False)
        self.BN1 = nn.BatchNorm2d(ndf * 2)

        self.conv3 = nn.Conv2d(ndf * 2, ndf * 4, 4, 1, 1, bias=False)
        self.BN2 = nn.BatchNorm2d(ndf * 4)

        self.conv4 = nn.Conv2d(ndf * 4, ndf * 8, 4, 1, 1, bias=False)
        self.BN3 = nn.BatchNorm2d(ndf * 8)

        self.conv5 = nn.Conv2d(ndf * 8, 64, 4, 1, 0, bias=False)
        self.fc1 = nn.Linear(10752,4096)
        self.fc2 = nn.Linear(4096,1000)

    def forward(self,x):
        x = self.conv1(x)
        x = self.LReLU1(x)

        x = self.conv2(x)
        x = F.leaky_relu(self.BN1(x))

        x = self.conv3(x)
        x = F.leaky_relu(self.BN2(x))
        
        x = self.conv4(x)
        # x = F.leaky_relu(self.BN3(x))
        # x = self.conv5(x)
        spp = spatial_pyramid_pool(x,1,[int(x.size(2)),int(x.size(3))],self.output_num)
        # print(spp.size())
        fc1 = self.fc1(spp)
        fc2 = self.fc2(fc1)
        s = nn.Sigmoid()
        output = s(fc2)
        return output
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
    '''
    previous_conv: a tensor vector of previous convolution layer
    num_sample: an int number of image in the batch
    previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
    out_pool_size: a int vector of expected output size of max pooling layer
    
    returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
    '''    
    # print(previous_conv.size())
    for i in range(len(out_pool_size)):
        # print(previous_conv_size)
        h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
        w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
        h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
        w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
        maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
        x = maxpool(previous_conv)
        if(i == 0):
            spp = x.view(num_sample,-1)
            # print("spp size:",spp.size())
        else:
            # print("size:",spp.size())
            spp = torch.cat((spp,x.view(num_sample,-1)), 1)
    return spp

(2)SPPF(Spatial Pyramid Pooling -Fast)

paper: 由于SPPF是yolov5作者基于SPP提出的,所以没有论文出处

yolov5 link: https://github.com/ultralytics/yolov5

code_pytorch

class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))

(3)ASPP(Simplified SPPF)

paper: DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

paper link: https://arxiv.org/pdf/1606.00915.pdf

repo link: https://github.com/kazuto1011/deeplab-pytorch

核心思想

提出了不对称空间金字塔池(ASPP)来在多个尺度上稳健地分割对象。ASPP在多个采样率和有效视场下使用滤波器探测传入的卷积特征层,从而在多个尺度上捕获对象和图像上下文。

code_pytorch

class _ASPP(nn.Module):
    """
    Atrous spatial pyramid pooling (ASPP)
    """

    def __init__(self, in_ch, out_ch, rates):
        super(_ASPP, self).__init__()
        for i, rate in enumerate(rates):
            self.add_module(
                "c{}".format(i),
                nn.Conv2d(in_ch, out_ch, 3, 1, padding=rate, dilation=rate, bias=True),
            )

        for m in self.children():
            nn.init.normal_(m.weight, mean=0, std=0.01)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        return sum([stage(x) for stage in self.children()])

(4)RFB

paper: Receptive Field Block Net for Accurate and Fast Object Detection

paper link: https://openaccess.thecvf.com/content_ECCV_2018/papers/Songtao_Liu_Receptive_Field_Block_ECCV_2018_paper.pdf

repo link: GitHub - GOATmessi7/RFBNet: Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

核心思想

受感受野(RF)结构的启发,我们提出了一种新的RF Block(RFB)模块,该模块考虑了RF的大小和偏心率之间的关系,以增强特征的可分辨性和鲁棒性。

Code_Pytorch

class BasicRFB(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1, visual = 1):
        super(BasicRFB, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes // 8
        self.branch0 = nn.Sequential(
                BasicConv(in_planes, 2*inter_planes, kernel_size=1, stride=stride),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual, dilation=visual, relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, 2*inter_planes, kernel_size=(3,3), stride=stride, padding=(1,1)),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=visual+1, dilation=visual+1, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, (inter_planes//2)*3, kernel_size=3, stride=1, padding=1),
                BasicConv((inter_planes//2)*3, 2*inter_planes, kernel_size=3, stride=stride, padding=1),
                BasicConv(2*inter_planes, 2*inter_planes, kernel_size=3, stride=1, padding=2*visual+1, dilation=2*visual+1, relu=False)
                )

        self.ConvLinear = BasicConv(6*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)

        out = torch.cat((x0,x1,x2),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out



class BasicRFB_a(nn.Module):

    def __init__(self, in_planes, out_planes, stride=1, scale = 0.1):
        super(BasicRFB_a, self).__init__()
        self.scale = scale
        self.out_channels = out_planes
        inter_planes = in_planes //4


        self.branch0 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=1,relu=False)
                )
        self.branch1 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(3,1), stride=1, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch2 = nn.Sequential(
                BasicConv(in_planes, inter_planes, kernel_size=1, stride=1),
                BasicConv(inter_planes, inter_planes, kernel_size=(1,3), stride=stride, padding=(0,1)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=3, dilation=3, relu=False)
                )
        self.branch3 = nn.Sequential(
                BasicConv(in_planes, inter_planes//2, kernel_size=1, stride=1),
                BasicConv(inter_planes//2, (inter_planes//4)*3, kernel_size=(1,3), stride=1, padding=(0,1)),
                BasicConv((inter_planes//4)*3, inter_planes, kernel_size=(3,1), stride=stride, padding=(1,0)),
                BasicConv(inter_planes, inter_planes, kernel_size=3, stride=1, padding=5, dilation=5, relu=False)
                )

        self.ConvLinear = BasicConv(4*inter_planes, out_planes, kernel_size=1, stride=1, relu=False)
        self.shortcut = BasicConv(in_planes, out_planes, kernel_size=1, stride=stride, relu=False)
        self.relu = nn.ReLU(inplace=False)

    def forward(self,x):
        x0 = self.branch0(x)
        x1 = self.branch1(x)
        x2 = self.branch2(x)
        x3 = self.branch3(x)

        out = torch.cat((x0,x1,x2,x3),1)
        out = self.ConvLinear(out)
        short = self.shortcut(x)
        out = out*self.scale + short
        out = self.relu(out)

        return out

class RFBNet(nn.Module):
    """RFB Net for object detection
    The network is based on the SSD architecture.
    Each multibox layer branches into
        1) conv2d for class conf scores
        2) conv2d for localization predictions
        3) associated priorbox layer to produce default bounding
           boxes specific to the layer's feature map size.
    See: https://arxiv.org/pdf/1711.07767.pdf for more details on RFB Net.

    Args:
        phase: (string) Can be "test" or "train"
        base: VGG16 layers for input, size of either 300 or 512
        extras: extra layers that feed to multibox loc and conf layers
        head: "multibox head" consists of loc and conf conv layers
    """

    def __init__(self, phase, size, base, extras, head, num_classes):
        super(RFBNet, self).__init__()
        self.phase = phase
        self.num_classes = num_classes
        self.size = size

        if size == 300:
            self.indicator = 3
        elif size == 512:
            self.indicator = 5
        else:
            print("Error: Sorry only SSD300 and SSD512 are supported!")
            return
        # vgg network
        self.base = nn.ModuleList(base)
        # conv_4
        self.Norm = BasicRFB_a(512,512,stride = 1,scale=1.0)
        self.extras = nn.ModuleList(extras)

        self.loc = nn.ModuleList(head[0])
        self.conf = nn.ModuleList(head[1])
        if self.phase == 'test':
            self.softmax = nn.Softmax(dim=-1)

    def forward(self, x):
        """Applies network layers and ops on input image(s) x.

        Args:
            x: input image or batch of images. Shape: [batch,3*batch,300,300].

        Return:
            Depending on phase:
            test:
                list of concat outputs from:
                    1: softmax layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]

            train:
                list of concat outputs from:
                    1: confidence layers, Shape: [batch*num_priors,num_classes]
                    2: localization layers, Shape: [batch,num_priors*4]
                    3: priorbox layers, Shape: [2,num_priors*4]
        """
        sources = list()
        loc = list()
        conf = list()

        # apply vgg up to conv4_3 relu
        for k in range(23):
            x = self.base[k](x)

        s = self.Norm(x)
        sources.append(s)

        # apply vgg up to fc7
        for k in range(23, len(self.base)):
            x = self.base[k](x)

        # apply extra layers and cache source layer outputs
        for k, v in enumerate(self.extras):
            x = v(x)
            if k < self.indicator or k%2 ==0:
                sources.append(x)

        # apply multibox head to source layers
        for (x, l, c) in zip(sources, self.loc, self.conf):
            loc.append(l(x).permute(0, 2, 3, 1).contiguous())
            conf.append(c(x).permute(0, 2, 3, 1).contiguous())

        #print([o.size() for o in loc])


        loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
        conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)

        if self.phase == "test":
            output = (
                loc.view(loc.size(0), -1, 4),                   # loc preds
                self.softmax(conf.view(-1, self.num_classes)),  # conf preds
            )
        else:
            output = (
                loc.view(loc.size(0), -1, 4),
                conf.view(conf.size(0), -1, self.num_classes),
            )
        return output

    def load_weights(self, base_file):
        other, ext = os.path.splitext(base_file)
        if ext == '.pkl' or '.pth':
            print('Loading weights into state dict...')
            self.load_state_dict(torch.load(base_file))
            print('Finished!')
        else:
            print('Sorry only .pth and .pkl files supported.')


# This function is derived from torchvision VGG make_layers()
# https://github.com/pytorch/vision/blob/master/torchvision/models/vgg.py

(5)SPPCSPC

paper: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors

paper link: https://arxiv.org/pdf/2207.02696v1.pdf

repo link: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors | Papers With Code

code_pytorch

class SPPCSPC(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
        super(SPPCSPC, self).__init__()
        c_ = int(2 * c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(c_, c_, 3, 1)
        self.cv4 = Conv(c_, c_, 1, 1)
        self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
        self.cv5 = Conv(4 * c_, c_, 1, 1)
        self.cv6 = Conv(c_, c_, 3, 1)
        self.cv7 = Conv(2 * c_, c2, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
        y2 = self.cv2(x)
        return self.cv7(torch.cat((y1, y2), dim=1))

(6) SimCSPSPPF

paper: YOLOv6 v3.0: A Full-Scale Reloading

paper link: https://arxiv.org/abs/2301.05586

repo link: GitHub - meituan/YOLOv6: YOLOv6: a single-stage object detection framework dedicated to industrial applications.

本文将SPPF简化为SimCSPSPF块,带来了性能增益,而速度退化可以忽略不计。

此外,探讨了不同类型的SPP块的影响,包括SPPF和SPPCSPC的简化变体(分别表示为SimSPPF和SimSPPCSPC)以及SimCSPSPF块,性能对比如下。

code_pytorch

class SPPFModule(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        c_ = in_channels // 2  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(c_ * 4, out_channels, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))


class SimSPPF(nn.Module):
    '''Simplified SPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNReLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class SPPF(nn.Module):
    '''SPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, block=ConvBNSiLU):
        super().__init__()
        self.sppf = SPPFModule(in_channels, out_channels, kernel_size, block)

    def forward(self, x):
        return self.sppf(x)


class CSPSPPFModule(nn.Module):
    # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        c_ = int(out_channels * e)  # hidden channels
        self.cv1 = block(in_channels, c_, 1, 1)
        self.cv2 = block(in_channels, c_, 1, 1)
        self.cv3 = block(c_, c_, 3, 1)
        self.cv4 = block(c_, c_, 1, 1)

        self.m = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
        self.cv5 = block(4 * c_, c_, 1, 1)
        self.cv6 = block(c_, c_, 3, 1)
        self.cv7 = block(2 * c_, out_channels, 1, 1)

    def forward(self, x):
        x1 = self.cv4(self.cv3(self.cv1(x)))
        y0 = self.cv2(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            y1 = self.m(x1)
            y2 = self.m(y1)
            y3 = self.cv6(self.cv5(torch.cat([x1, y1, y2, self.m(y2)], 1)))
        return self.cv7(torch.cat((y0, y3), dim=1))


class SimCSPSPPF(nn.Module):
    '''CSPSPPF with ReLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNReLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)


class CSPSPPF(nn.Module):
    '''CSPSPPF with SiLU activation'''
    def __init__(self, in_channels, out_channels, kernel_size=5, e=0.5, block=ConvBNSiLU):
        super().__init__()
        self.cspsppf = CSPSPPFModule(in_channels, out_channels, kernel_size, e, block)

    def forward(self, x):
        return self.cspsppf(x)

猜你喜欢

转载自blog.csdn.net/m0_73832962/article/details/134810641