四元数数学性质、运算规则、线性插值(公式版)

四元数

在这里插入图片描述

Q = ⟨ x , y , z , w ⟩ Q = \langle x, y, z, w \rangle Q=x,y,z,w

Q = x i + y j + z k + w Q = xi + yj + zk + w Q=xi+yj+zk+w

1.运算与性质

1)数乘

Q = s ⋅ ⟨ x , y , z , w ⟩ = ⟨ s ⋅ z , s ⋅ y , s ⋅ z , s ⋅ w ⟩ Q = s \cdot \langle x, y, z, w \rangle = \langle s \cdot z, s \cdot y, s \cdot z, s \cdot w \rangle Q=sx,y,z,w=sz,sy,sz,sw

Q s = ( x s , y s , z s , w s ) \frac{Q}{s} = \left( \frac{x}{s}, \frac{y}{s}, \frac{z}{s}, \frac{w}{s} \right) sQ=(sx,sy,sz,sw)

2)四元数加减法(Add,Substract)

Q = ⟨ x 1 + x 2 , y 1 + y 2 , z 1 + z 2 , w 1 + w 2 ⟩ Q = \langle x_1 + x_2, y_1 + y_2, z_1 + z_2, w_1 + w_2 \rangle Q=x1+x2,y1+y2,z1+z2,w1+w2

Q = ⟨ x 1 − x 2 , y 1 − y 2 , z 1 − z 2 , w 1 − w 2 ⟩ Q = \langle x_1 - x_2, y_1 - y_2, z_1 - z_2, w_1 - w_2 \rangle Q=x1x2,y1y2,z1z2,w1w2

3) 模运算(Norm)

∥ Q ∥ = x 2 + y 2 + z 2 + w 2 \|Q\| = \sqrt{x^2 + y^2 + z^2 + w^2} Q=x2+y2+z2+w2

4)标准化(Normalize)

Q normalized = Q ∥ Q ∥ = ⟨ x , y , z , w ⟩ x 2 + y 2 + z 2 + w 2 Q_{\text{normalized}} = \frac{Q}{\|Q\|} = \frac{\langle x, y, z, w \rangle}{\sqrt{x^2 + y^2 + z^2 + w^2}} Qnormalized=QQ=x2+y2+z2+w2 x,y,z,w

5)共轭(Conjugate)

Q ∗ = ⟨ − x , − y , − z , w ⟩ Q^* = \langle -x, -y, -z, w \rangle Q=x,y,z,w

6)逆元 (Reverse)

Q − 1 = Q ∗ ∥ Q ∥ 2 Q^{-1} = \frac{Q^*}{\|Q\|^2} Q1=Q2Q

7)四元数乘法(Mutiply)

Q 1 ∗ Q 2 = ( w 1 w 2 − x 1 x 2 − y 1 y 2 − z 1 z 2 , w 1 x 2 + x 1 w 2 + y 1 z 2 − z 1 y 2 , w 1 y 2 − x 1 z 2 + y 1 w 2 + z 1 x 2 , w 1 z 2 + x 1 y 2 − y 1 x 2 + z 1 w 2 ) \begin{align*} Q_1 * Q_2 = \left( w_1w_2 - x_1x_2 - y_1y_2 - z_1z_2, \right. \\ \left. w_1x_2 + x_1w_2 + y_1z_2 - z_1y_2, \right. \\ \left. w_1y_2 - x_1z_2 + y_1w_2 + z_1x_2, \right. \\ \left. w_1z_2 + x_1y_2 - y_1x_2 + z_1w_2 \right) \end{align*} Q1Q2=(w1w2x1x2y1y2z1z2,w1x2+x1w2+y1z2z1y2,w1y2x1z2+y1w2+z1x2,w1z2+x1y2y1x2+z1w2)

注意:在下文我们使用 · (点) 来表示点乘或者数乘,使用 * (星)表示四元数乘法

7)欧拉角构造四元数

在欧拉角的值为角度时
Yaw ( ψ ) → ψ Pitch ( θ ) → θ Roll ( ϕ ) → ϕ \begin{align*} \text{Yaw (}\psi\text{)} &\rightarrow \psi \\ \text{Pitch (}\theta\text{)} &\rightarrow \theta \\ \text{Roll (}\phi\text{)} &\rightarrow \phi \\ \end{align*} Yaw (ψ)Pitch (θ)Roll (ϕ)ψθϕ
在值为弧度时
Yaw ( ψ ) → Yaw ( ψ ) ⋅ π 180 Pitch ( θ ) → Pitch ( θ ) ⋅ π 180 Roll ( ϕ ) → Roll ( ϕ ) ⋅ π 180 \begin{align*} \text{Yaw (}\psi\text{)} &\rightarrow \frac{\text{Yaw (}\psi\text{)} \cdot \pi}{180} \\ \text{Pitch (}\theta\text{)} &\rightarrow \frac{\text{Pitch (}\theta\text{)} \cdot \pi}{180} \\ \text{Roll (}\phi\text{)} &\rightarrow \frac{\text{Roll (}\phi\text{)} \cdot \pi}{180} \\ \end{align*} Yaw (ψ)Pitch (θ)Roll (ϕ)180Yaw (ψ)π180Pitch (θ)π180Roll (ϕ)π

变化后,求得四元数的四个分量
x = sin ⁡ ( ψ 2 ) ⋅ cos ⁡ ( θ 2 ) ⋅ cos ⁡ ( ϕ 2 ) − cos ⁡ ( ψ 2 ) ⋅ sin ⁡ ( θ 2 ) ⋅ sin ⁡ ( ϕ 2 ) y = cos ⁡ ( ψ 2 ) ⋅ sin ⁡ ( θ 2 ) ⋅ cos ⁡ ( ϕ 2 ) + sin ⁡ ( ψ 2 ) ⋅ cos ⁡ ( θ 2 ) ⋅ sin ⁡ ( ϕ 2 ) z = cos ⁡ ( ψ 2 ) ⋅ cos ⁡ ( θ 2 ) ⋅ sin ⁡ ( ϕ 2 ) − sin ⁡ ( ψ 2 ) ⋅ sin ⁡ ( θ 2 ) ⋅ cos ⁡ ( ϕ 2 ) w = cos ⁡ ( ψ 2 ) ⋅ cos ⁡ ( θ 2 ) ⋅ cos ⁡ ( ϕ 2 ) + sin ⁡ ( ψ 2 ) ⋅ sin ⁡ ( θ 2 ) ⋅ sin ⁡ ( ϕ 2 ) \begin{align*} x &= \sin\left(\frac{\psi}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\phi}{2}\right) - \cos\left(\frac{\psi}{2}\right) \cdot \sin\left(\frac{\theta}{2}\right) \cdot \sin\left(\frac{\phi}{2}\right) \\ y &= \cos\left(\frac{\psi}{2}\right) \cdot \sin\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\phi}{2}\right) + \sin\left(\frac{\psi}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \sin\left(\frac{\phi}{2}\right) \\ z &= \cos\left(\frac{\psi}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \sin\left(\frac{\phi}{2}\right) - \sin\left(\frac{\psi}{2}\right) \cdot \sin\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\phi}{2}\right) \\ w &= \cos\left(\frac{\psi}{2}\right) \cdot \cos\left(\frac{\theta}{2}\right) \cdot \cos\left(\frac{\phi}{2}\right) + \sin\left(\frac{\psi}{2}\right) \cdot \sin\left(\frac{\theta}{2}\right) \cdot \sin\left(\frac{\phi}{2}\right) \\ \end{align*} xyzw=sin(2ψ)cos(2θ)cos(2ϕ)cos(2ψ)sin(2θ)sin(2ϕ)=cos(2ψ)sin(2θ)cos(2ϕ)+sin(2ψ)cos(2θ)sin(2ϕ)=cos(2ψ)cos(2θ)sin(2ϕ)sin(2ψ)sin(2θ)cos(2ϕ)=cos(2ψ)cos(2θ)cos(2ϕ)+sin(2ψ)sin(2θ)sin(2ϕ)

如果需要对某个轴旋转特定角度
Q = ( sin ⁡ ( θ 2 ) ⋅ a , sin ⁡ ( θ 2 ) ⋅ b , sin ⁡ ( θ 2 ) ⋅ c , cos ⁡ ( θ 2 ) ) Q = \left(\sin\left(\frac{\theta}{2}\right) \cdot a, \sin\left(\frac{\theta}{2}\right) \cdot b, \sin\left(\frac{\theta}{2}\right) \cdot c, \cos\left(\frac{\theta}{2}\right)\right) Q=(sin(2θ)a,sin(2θ)b,sin(2θ)c,cos(2θ))

8)四元数转欧拉角

Yaw ( ψ ) → arctan ⁡ 2 ( 2 ⋅ ( x ⋅ y + z ⋅ w ) , 1 − 2 ⋅ ( y 2 + z 2 ) ) Pitch ( θ ) → arcsin ⁡ ( 2 ⋅ ( x ⋅ z − w ⋅ y ) ) Roll ( ϕ ) → arctan ⁡ 2 ( 2 ⋅ ( y ⋅ z + x ⋅ w ) , 1 − 2 ⋅ ( z 2 + y 2 ) ) \begin{align*} \text{Yaw (}\psi\text{)} &\rightarrow \arctan2(2 \cdot (x \cdot y + z \cdot w), 1 - 2 \cdot (y^2 + z^2)) \\ \text{Pitch (}\theta\text{)} &\rightarrow \arcsin(2 \cdot (x \cdot z - w \cdot y)) \\ \text{Roll (}\phi\text{)} &\rightarrow \arctan2(2 \cdot (y \cdot z + x \cdot w), 1 - 2 \cdot (z^2 + y^2)) \end{align*} Yaw (ψ)Pitch (θ)Roll (ϕ)arctan2(2(xy+zw),12(y2+z2))arcsin(2(xzwy))arctan2(2(yz+xw),12(z2+y2))
(注意:arctan2是一个被多种编程语言支持的反正切函数)

9)四元数点乘

Q 1 ⋅ Q 2 = x 1 ⋅ x 2 + y 1 ⋅ y 2 + z 1 ⋅ z 2 + w 1 ⋅ w 2 Q_1 \cdot Q_2 = x_1 \cdot x_2 + y_1 \cdot y_2 + z_1 \cdot z_2 + w_1 \cdot w_2 Q1Q2=x1x2+y1y2+z1z2+w1w2

我们可以通过这样的方式计算出两个四元数的夹角
θ = arccos ⁡ ( Q 1 ⋅ Q 2 ) \theta = \arccos(Q_1 \cdot Q_2) θ=arccos(Q1Q2)

当点积为0时,表明两个四元数正交
Q 1 ⋅ Q 2 = 0 Q_1 \cdot Q_2 = 0 Q1Q2=0
当四元数保持单位模时,表明为单位四元数
Q ⋅ Q = 1 Q \cdot Q = 1 QQ=1

10)四元数普通线性插值

Lerp的公式如下

Q lerp = ( 1 − t ) ⋅ Q 1 + t ⋅ Q 2 Q_{\text{lerp}} = (1 - t) \cdot Q_1 + t \cdot Q_2 Qlerp=(1t)Q1+tQ2
这个插值被称为NLerp,也就是先进行线性插值,再进行标准化
Q nlerp = ( 1 − t ) ⋅ Q 1 + t ⋅ Q 2 ∥ ( 1 − t ) ⋅ Q 1 + t ⋅ Q 2 ∥ Q_{\text{nlerp}} = \frac{(1 - t) \cdot Q_1 + t \cdot Q_2}{\| (1 - t) \cdot Q_1 + t \cdot Q_2 \|} Qnlerp=(1t)Q1+tQ2(1t)Q1+tQ2
注意:此处的“点”均为“数乘”或“四元数点乘”

11) 四元数球面线性插值

α = cos ⁡ − 1 ( Q 1 ⋅ Q 2 ) \alpha = \cos^{-1}(Q_1 \cdot Q_2) α=cos1(Q1Q2)

Q slerp = = sin ⁡ ( ( 1 − t ) ⋅ α ) sin ⁡ ( α ) ⋅ Q 1 + sin ⁡ ( t ⋅ α ) sin ⁡ ( α ) ⋅ Q 2 Q_{\text{slerp}} = = \frac{\sin((1 - t) \cdot \alpha)}{\sin(\alpha)} \cdot Q_1 + \frac{\sin(t \cdot \alpha)}{\sin(\alpha)} \cdot Q_2 Qslerp==sin(α)sin((1t)α)Q1+sin(α)sin(tα)Q2
注意:此处的“点”均为“数乘”或“四元数点乘”

12) 四元数转旋转矩阵

仿射变换旋转矩阵:
R = [ 1 − 2 y 2 − 2 z 2 2 x y − 2 w z 2 x z + 2 w y 2 x y + 2 w z 1 − 2 x 2 − 2 z 2 2 y z − 2 w x 2 x z − 2 w y 2 y z + 2 w x 1 − 2 x 2 − 2 y 2 ] R = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 \end{bmatrix} R= 12y22z22xy+2wz2xz2wy2xy2wz12x22z22yz+2wx2xz+2wy2yz2wx12x22y2

齐次坐标旋转矩阵:
T = [ 1 − 2 y 2 − 2 z 2 2 x y − 2 w z 2 x z + 2 w y 0 2 x y + 2 w z 1 − 2 x 2 − 2 z 2 2 y z − 2 w x 0 2 x z − 2 w y 2 y z + 2 w x 1 − 2 x 2 − 2 y 2 0 0 0 0 1 ] T = \begin{bmatrix} 1 - 2y^2 - 2z^2 & 2xy - 2wz & 2xz + 2wy & 0 \\ 2xy + 2wz & 1 - 2x^2 - 2z^2 & 2yz - 2wx & 0 \\ 2xz - 2wy & 2yz + 2wx & 1 - 2x^2 - 2y^2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} T= 12y22z22xy+2wz2xz2wy02xy2wz12x22z22yz+2wx02xz+2wy2yz2wx12x22y200001

12)旋转矩阵转四元数

对于以下仿射变换旋转矩阵
R = [ R 11 R 12 R 13 R 21 R 22 R 23 R 31 R 32 R 33 ] R = \begin{bmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{bmatrix} R= R11R21R31R12R22R32R13R23R33
或在齐次坐标下的旋转矩阵
T = [ R 11 R 12 R 13 0 R 21 R 22 R 23 0 R 31 R 32 R 33 0 0 0 0 1 ] T = \begin{bmatrix} R_{11} & R_{12} & R_{13} & 0 \\ R_{21} & R_{22} & R_{23} & 0 \\ R_{31} & R_{32} & R_{33} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} T= R11R21R310R12R22R320R13R23R3300001

都可以按以下方式获取四元数的四个部分
Q = { w = 1 + R 11 + R 22 + R 33 x = R 32 − R 23 4 w y = R 13 − R 31 4 w z = R 21 − R 12 4 w Q = \begin{cases} w = \sqrt{1 + R_{11} + R_{22} + R_{33}} \\ x = \frac{R_{32} - R_{23}}{4w} \\ y = \frac{R_{13} - R_{31}}{4w} \\ z = \frac{R_{21} - R_{12}}{4w} \end{cases} Q= w=1+R11+R22+R33 x=4wR32R23y=4wR13R31z=4wR21R12

12)四元数叉乘

一般来讲四元数叉乘并没有意义,只是在某些特定的算法或情景中定义的全新的运算法则,而不具备广泛的实用性。可以根据需求调整叉乘的定义,这里不再给出相关信息。

2.运算律与定义

1).单位元(Identity)

规定单位元为
Q i d e n t i t y = ⟨ 0 , 0 , 0 , 1 ⟩ Q_{identity} = \langle 0, 0, 0, 1 \rangle Qidentity=0,0,0,1

2).单位四元数

规定模长(Norm)为1为单位四元数

3).逆元

每个非零四元数都有一个逆元,相乘结果为单位元,注意前置条件
Q ⋅ Q − 1 = Q i d e n t i t y Q \cdot Q^{-1}= Q_{identity} QQ1=Qidentity

4).结合律

( Q 1 ⋅ Q 2 ) ⋅ Q 3 = Q 1 ⋅ ( Q 2 ⋅ Q 3 ) (Q_1 \cdot Q_2) \cdot Q_3 = Q_1 \cdot (Q_2 \cdot Q_3) (Q1Q2)Q3=Q1(Q2Q3)

5).乘法交换率不成立

Q 1 ⋅ Q 2 ≠ Q 2 ⋅ Q 1 Q_1 \cdot Q_2 \neq Q_2 \cdot Q_1 Q1Q2=Q2Q1

6).乘法封闭性

四元数乘法是封闭的,也就是说,两个四元数的乘积仍然是四元数。

7).无万向节锁问题

"万向锁问题"是指在使用欧拉角来描述旋转时,存在一个特定情况,其中三个旋转轴的旋转角度不能独立地表示物体的方向,因为它们会相互影响。这会导致旋转的奇异性,使得无法准确描述物体的姿态。
四元数和旋转矩阵均无万向锁问题,但是矩阵需要占据很大的运算空间,有高昂的代价,而四元数解决这一问题的代价是升维,使得旋转失去了直观性和简单性。

猜你喜欢

转载自blog.csdn.net/qq_46273241/article/details/133919618