感知机(Perceptron)的原理及实现

1.感知机(Perceptron)的原理及实现

声明:笔记来源于《白话机器学习的数学》

感知机是接受多个输入后将每个值与各自权重相乘,最后输出总和的模型。
单层感知机因过于简单,无法应用于实际问题,但它是神经网络和深度学习的基础模型。
单层感知机指的是感知机、多层感知机指的是神经网络(之前本人相关笔记:机器学习和AI底层逻辑深度神经网络底层原理卷积神经网络底层原理

w ⋅ x = ∑ i = 1 n w i x i \boldsymbol{w}\cdot\boldsymbol{x}=\sum_{i=1}^{n}w_ix_i wx=i=1nwixi


感知机的缺点是只能解决线性可分的问题

1.1 使用向量内积来表达直线(分类边界)

权重向量中的各个值就是我们说的未知参数

如何使用向量内积来表达直线?
向量内积衡量的是两个向量的相似程度
利用内积为0,则两个向量垂直,其中一个向量为权重向量,另一个向量所在的直线则可表示分类边界

假设权重向量 w = ( 1 , 1 ) w=(1,1) w=(1,1)

移项后为 x 2 = − x 1 x_2=-x_1 x2=x1 x 2 x_2 x2为纵轴、 x 1 x_1 x1为横轴


我们观察一下分类边界的两侧对应内积的情况

图1 内积为负
图2 内积为正

为什么是这种结果的呢?
w ⋅ x = ∣ w ∣ ⋅ ∣ x ∣ cos ⁡ θ \boldsymbol{w}\cdot\boldsymbol{x}=|\boldsymbol{w}|\cdot|\boldsymbol{x}|\cos\theta wx=wxcosθ
其中 ∣ w ∣ 、 ∣ x ∣ |\boldsymbol{w}|、|\boldsymbol{x}| wx均为正数,
w ⋅ x < 0 \boldsymbol{w}\cdot\boldsymbol{x}\lt 0 wx<0,则 cos ⁡ θ < 0 \cos\theta\lt 0 cosθ<0,即 θ \theta θ范围为 [ 90 ° , 180 ° ] [90°,180°] [90°180°],与权重向量夹角在此范围的内积为负
w ⋅ x > 0 \boldsymbol{w}\cdot\boldsymbol{x}\gt 0 wx>0,则 cos ⁡ θ > 0 \cos\theta\gt 0 cosθ>0,即 θ \theta θ范围为 [ 0 ° , 90 ° ] ∪ [ 270 ° , 360 ° ] [0°,90°]\cup[270°,360°] [90°][270°360°],与权重向量夹角在此范围的内积为正

上图中的两个范围作为两个类别,那一条直线就是分类边界,这个分类边界由权重向量表示
在权重向量已知的情况下(权重向量需要我们通过训练来得到),我们将数据代入,判断内积的正负即可完成分类的任务
我们为内积为负的区域类别设置标签为-1,为内积为正的区域类别设置标签为1

1.2 权重向量的更新表达式

f w ( x ( i ) ) f_{\boldsymbol{w}}(\boldsymbol{x}^{(i)}) fw(x(i))为判别函数、 y ( i ) y^{(i)} y(i)为对应的标签,标签代表该数据在哪个分类(可能是人工标注)

如果 f w ( x ( i ) ) ≠ y ( i ) f_{\boldsymbol{w}}(\boldsymbol{x}^{(i)})\neq y^{(i)} fw(x(i))=y(i)表示分类失败,例如某些应该在内积为负区域的值落在了正区域,则需要更新权重向量(图像上表现为权重向量的旋转)
如果 f w ( x ( i ) ) = y ( i ) f_{\boldsymbol{w}}(\boldsymbol{x}^{(i)})= y^{(i)} fw(x(i))=y(i)表示分类成功,则无需更新权重向量(位置保持不变)

随意画一个权重向量
代入一个训练数据
数据的判别函数与数据标签不等,分类失败
旋转权重向量


旋转权重向量后,该数据判别结果与标签相等,分类成功,代入所有数据使得权重向量最终在这些数据的正确位置,其法线向量所在直线为分类边界

1.2 感知机(Perceptron)的实现

输入图像水平方向和竖直方向的像素,判断该图像是纵向的还是横向的?

纵向
横向

x 1 x1 x1为水平方向像素、 x 2 x2 x2为竖直方向像素、 y y y为标签, y = − 1 y=-1 y=1代表该图像为纵向的, y = 1 y=1 y=1代表该图像为横向的

import numpy as np
import matplotlib.pyplot as plt

# 读入训练数据
train = np.loadtxt('~/Downloads/sourcecode-cn/images1.csv', delimiter=',', skiprows=1)
train_x = train[:,0:2]
train_y = train[:,2]

绘制训练数据

plt.plot(train_x[train_y == 1, 0], train_x[train_y == 1, 1], 'o')
plt.plot(train_x[train_y == -1, 0], train_x[train_y == -1, 1], 'x')
plt.axis('scaled')
plt.show()

x 1 x_1 x1 x x x 轴, x 2 x_2 x2 y y y

# 权重初始化
w = np.random.rand(2)

w = [ w 1 w 2 ] \boldsymbol{w}=\left [ \begin{matrix} w_1 \\ w_2 \\ \end{matrix} \right ] w=[w1w2]

# 判别函数
def f(x):
    if np.dot(w, x) >= 0:
        return 1
    else:
        return -1

# 重复次数
epoch = 10

# 更新次数
count = 0

感知机停止学习的标准最好根据精度来决定是否停止,我们这里暂时通过规定迭代次数作为循环的结束条件

# 学习权重
for _ in range(epoch):
    for x, y in zip(train_x, train_y):
        if f(x) != y:
            w = w + y * x

            # 输出日志
            count += 1
            print('第 {} 次 : w = {}'.format(count, w))

# 绘图确认
x1 = np.arange(0, 500)
plt.plot(train_x[train_y ==  1, 0], train_x[train_y ==  1, 1], 'o')
plt.plot(train_x[train_y == -1, 0], train_x[train_y == -1, 1], 'x')
plt.plot(x1, -w[0] / w[1] * x1, linestyle='dashed')
plt.show()

使权重向量成为法线向量的直线方程是内积为 0 的 x 的集合


验证

猜你喜欢

转载自blog.csdn.net/weixin_48524215/article/details/131342541