机器学习的数学基础(上)

[]{#_Toc405731550 .anchor}

目录

机器学习的数学基础 1

高等数学 1

线性代数 9

概率论和数理统计 19

机器学习的数学基础 {#机器学习的数学基础 .58}

高等数学

1.导数定义:

导数和微分的概念

f ′ ( x 0 ) = lim ⁡ Δ x → 0   f ( x 0 + Δ x ) − f ( x 0 ) Δx f'(x_{0}) = \lim_{\Delta x \rightarrow 0}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} f(x0)=limΔx0Δxf(x0+Δx)f(x0)
(1)

或者: f ′ ( x 0 ) = lim ⁡ x → x 0   f ( x ) − f ( x 0 ) x − x 0 f'(x_{0}) = \lim_{x \rightarrow x_{0}}\,\frac{f(x) - f(x_{0})}{x - x_{0}} f(x0)=limxx0xx0f(x)f(x0)
(2)

2.左右导数导数的几何意义和物理意义

函数 f ( x ) f(x) f(x) x 0 x_{0} x0处的左、右导数分别定义为:

左导数: f ′ − ( x 0 ) = lim ⁡ Δ x → 0 −   f ( x 0 + Δ x ) − f ( x 0 ) Δx = lim ⁡ x → x 0 −   f ( x ) − f ( x 0 ) x − x 0 , ( x = x 0 + Δ x ) {f'}_{-}(x_{0}) = \lim_{\Delta x \rightarrow 0^{-}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{-}}\,\frac{f(x) - f(x_{0})}{x - x_{0}},(x = x_{0} + \Delta x) f(x0)=limΔx0Δxf(x0+Δx)f(x0)=limxx0xx0f(x)f(x0),(x=x0+Δx)

右导数: f ′ + ( x 0 ) = lim ⁡ Δ x → 0 +   f ( x 0 + Δ x ) − f ( x 0 ) Δx = lim ⁡ x → x 0 +   f ( x ) − f ( x 0 ) x − x 0 {f'}_{+}(x_{0}) = \lim_{\Delta x \rightarrow 0^{+}}\,\frac{f(x_{0} + \Delta x) - f(x_{0})}{\text{Δx}} = \lim_{x \rightarrow x_{0}^{+}}\,\frac{f(x) - f(x_{0})}{x - x_{0}} f+(x0)=limΔx0+Δxf(x0+Δx)f(x0)=limxx0+xx0f(x)f(x0)

3.函数的可导性与连续性之间的关系

Th1:
函数 f ( x ) f(x) f(x) x 0 x_{0} x0处可微 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_{0} x0处可导。

**Th2:**若函数在点 x 0 x_{0} x0处可导,则 y = f ( x ) y = f(x) y=f(x)在点 x 0 x_{0} x0处连续,反之则不成立.即函数连续不一定可导。

Th3: f ′ ( x 0 ) f'(x_{0}) f(x0)存在 ⇔ f ′ − ( x 0 ) = f ′ + ( x 0 ) \Leftrightarrow {f'}_{-}(x_{0}) = {f'}_{+}(x_{0}) f(x0)=f+(x0)

4.平面曲线的切线和法线

切线方程 : y − y 0 = f ′ ( x 0 ) ( x − x 0 ) y - y_{0} = f'(x_{0})(x - x_{0}) yy0=f(x0)(xx0)

法线方程: y − y 0 = − 1 f ′ ( x 0 ) ( x − x 0 ) , f ′ ( x 0 ) ≠ 0 y - y_{0} = - \frac{1}{f'(x_{0})}(x - x_{0}),f'(x_{0}) \neq 0 yy0=f(x0)1(xx0),f(x0)=0

5.四则运算法则

设函数 u = u ( x ) , v = v ( x ) u = u(x),v = v(x) u=u(x),v=v(x)在点 x x x可导,则:

(1) ( u ± v ) ′ = u ′ ± v ′ \left( u \pm v \right)^{'} = u^{'} \pm v^{'} (u±v)=u±v      \text{\ \ \ \ }     

(2) ( uv ) ′ = uv ′ + vu ′ (\text{uv})' = \text{uv}' + \text{vu}' (uv)=uv+vu
d ( uv ) = udv + vdu d(\text{uv}) = \text{udv} + \text{vdu} d(uv)=udv+vdu

(3) ( u v ) ′ = vu ′ − uv ′ v 2 ( v ≠ 0 ) (\frac{u}{v})' = \frac{\text{vu}' - \text{uv}'}{v^{2}}(v \neq 0) (vu)=v2vuuv(v=0)
d ( u v ) = vdu − udv v 2 d(\frac{u}{v}) = \frac{\text{vdu} - \text{udv}}{v^{2}} d(vu)=v2vduudv

6.基本导数与微分表

(1) y = c y = c y=c(常数) 则: y ′ = 0 y^{'} = 0 y=0 dy = 0 \text{dy} = 0 dy=0

(2) y = x α y = x^{\alpha} y=xα( α \alpha α为实数) 则: y ′ = α x α − 1 y' = \alpha x^{\alpha - 1} y=αxα1
dy = α x α − 1 dx \text{dy} = \alpha x^{\alpha - 1}\text{dx} dy=αxα1dx

(3) y = a x y = a^{x} y=ax 则: y ′ = a x ln ⁡ a y' = a^{x}\ln a y=axlna dy = a x ln ⁡ adx \text{dy} = a^{x}\ln\text{adx} dy=axlnadx
特例: ( e x ) ′ = e x (e^{x})' = e^{x} (ex)=ex d ( e x ) = e x dx d(e^{x}) = e^{x}\text{dx} d(ex)=exdx

(4) y ′ = 1 x ln ⁡ a y' = \frac{1}{x\ln a} y=xlna1 则: dy = 1 x ln ⁡ a dx \text{dy} = \frac{1}{x\ln a}\text{dx} dy=xlna1dx
特例: y = l n x y = lnx y=lnx ( l n x ) ′ = 1 x (lnx)' = \frac{1}{x} (lnx)=x1 d ( l n x ) = 1 x dx d(lnx) = \frac{1}{x}\text{dx} d(lnx)=x1dx

(5) y = s i n x y = sinx y=sinx 则: y ′ = c o s x y' = cosx y=cosx d ( s i n x ) = c o s xdx d(sinx) = cos\text{xdx} d(sinx)=cosxdx

(6) y = c o s x y = cosx y=cosx 则: y ′ = − s i n x y' = - sinx y=sinx d ( c o s x ) = − s i n xdx d(cosx) = - sin\text{xdx} d(cosx)=sinxdx

(7) y = t a n x y = tanx y=tanx 则: y ′ = 1 cos ⁡ 2 x = sec ⁡ 2 x y^{'} = \frac{1}{\cos^{2}x} = \sec^{2}x y=cos2x1=sec2x
d ( t a n x ) = sec ⁡ 2 xdx d(tanx) = \sec^{2}\text{xdx} d(tanx)=sec2xdx

(8) y = c o t x y = cotx y=cotx 则: y ′ = − 1 sin ⁡ 2 x = − csc ⁡ 2 x y' = - \frac{1}{\sin^{2}x} = - \csc^{2}x y=sin2x1=csc2x
d ( c o t x ) = − csc ⁡ 2 xdx d(cotx) = - \csc^{2}\text{xdx} d(cotx)=csc2xdx

(9) y = s e c x y = secx y=secx 则: y ′ = s e c x tan ⁡ x y' = secx\tan x y=secxtanx d ( s e c x ) = s e c x tan ⁡ xdx d(secx) = secx\tan\text{xdx} d(secx)=secxtanxdx

(10) y = c s c x y = cscx y=cscx 则: y ′ = − c s c x cot ⁡ x y' = - cscx\cot x y=cscxcotx d ( c s c x ) = − c s c x cot ⁡ xdx d(cscx) = - cscx\cot\text{xdx} d(cscx)=cscxcotxdx

(11) y = a r c s i n x y = arcsinx y=arcsinx 则: y ′ = 1 1 − x 2 y' = \frac{1}{\sqrt{1 - x^{2}}} y=1x2 1
d ( a r c s i n x ) = 1 1 − x 2 dx d(arcsinx) = \frac{1}{\sqrt{1 - x^{2}}}\text{dx} d(arcsinx)=1x2 1dx

(12) y = a r c c o s x y = arccosx y=arccosx 则: y ′ = − 1 1 − x 2 y' = - \frac{1}{\sqrt{1 - x^{2}}} y=1x2 1
d ( a r c c o s x ) = − 1 1 − x 2 dx d(arccosx) = - \frac{1}{\sqrt{1 - x^{2}}}\text{dx} d(arccosx)=1x2 1dx

(13) y = a r c t a n x y = arctanx y=arctanx 则: y ′ = 1 1 + x 2 y' = \frac{1}{1 + x^{2}} y=1+x21
d ( a r c t a n x ) = 1 1 + x 2 dx d(arctanx) = \frac{1}{1 + x^{2}}\text{dx} d(arctanx)=1+x21dx

(14) y = a r c c o t x y = arccotx y=arccotx 则: y ′ = − 1 1 + x 2 y' = - \frac{1}{1 + x^{2}} y=1+x21
d ( a r c c o t x ) = − 1 1 + x 2 dx d(arccotx) = - \frac{1}{1 + x^{2}}\text{dx} d(arccotx)=1+x21dx

(15) y = s x y = sx y=sx 则: y ′ = c x y' = cx y=cx d ( s x ) = c x d x d(sx) = cxdx d(sx)=cxdx

(16) y = c x y = cx y=cx 则: y ′ = s x y' = sx y=sx d ( c x ) = s x d x d(cx) = sxdx d(cx)=sxdx

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则:
y = f ( x ) y = f(x) y=f(x)在点 x x x的某邻域内单调连续,在点 x x x处可导且 f ′ ( x ) ≠ 0 f'(x) \neq 0 f(x)=0,则其反函数在点 x x x所对应的 y y y处可导,并且有 dy dx = 1 dx dy \frac{\text{dy}}{\text{dx}} = \frac{1}{\frac{\text{dx}}{\text{dy}}} dxdy=dydx1

(2)
复合函数的运算法则:若 μ = φ ( x ) \mu = \varphi(x) μ=φ(x)在点 x x x可导,而 y = f ( μ ) y = f(\mu) y=f(μ)在对应点 μ \mu μ( μ = φ ( x ) \mu = \varphi(x) μ=φ(x))可导,则复合函数 y = f ( φ ( x ) ) y = f(\varphi(x)) y=f(φ(x))在点 x x x可导,且 y ′ = f ′ ( μ ) ⋅ φ ′ ( x ) y' = f'(\mu) \cdot \varphi'(x) y=f(μ)φ(x)

(3) 隐函数导数 dy dx \frac{\text{dy}}{\text{dx}} dxdy的求法一般有三种方法:

1)方程两边对 x x x求导,要记住 y y y x x x的函数,则 y y y的函数是 x x x的复合函数.例如 1 y \frac{1}{y} y1 y 2 y^{2} y2 lny \text{lny} lny e y e^{y} ey等均是 x x x的复合函数.
x x x求导应按复合函数连锁法则做。

2)公式法.由 F ( x , y ) = 0 F(x,y) = 0 F(x,y)=0
dy dx = − F ′ x ( x , y ) F ′ y ( x , y ) \frac{\text{dy}}{\text{dx}} = - \frac{ {F'}_{x}(x,y)}{ {F'}_{y}(x,y)} dxdy=Fy(x,y)Fx(x,y),其中, F ′ x ( x , y ) {F'}_{x}(x,y) Fx(x,y)
F ′ y ( x , y ) {F'}_{y}(x,y) Fy(x,y)分别表示 F ( x , y ) F(x,y) F(x,y) x x x y y y的偏导数。

3)利用微分形式不变性

8.常用高阶导数公式

(1)KaTeX parse error: Got group of unknown type: 'internal'

(2)KaTeX parse error: Got group of unknown type: 'internal'

(3)KaTeX parse error: Got group of unknown type: 'internal'

(4)KaTeX parse error: Got group of unknown type: 'internal'

(5)KaTeX parse error: Got group of unknown type: 'internal'

(6)莱布尼兹公式:若 u ( x )   , v ( x ) u(x)\,,v(x) u(x),v(x) n n n阶可导,则:
( uv ) ( n ) = ∑ i = 0 n c n i u ( i ) v ( n − i ) {(\text{uv})}^{(n)} = \sum_{i = 0}^{n}{c_{n}^{i}u^{(i)}v^{(n - i)}} (uv)(n)=i=0ncniu(i)v(ni),其中 u ( 0 ) = u u^{(0)} = u u(0)=u v ( 0 ) = v v^{(0)} = v v(0)=v

9.微分中值定理,泰勒公式

Th1:(费马定理)

若函数 f ( x ) f(x) f(x)满足条件:

(1)函数 f ( x ) f(x) f(x) x 0 x_{0} x0的某邻域内有定义,并且在此邻域内恒有
f ( x ) ≤ f ( x 0 ) f(x) \leq f(x_{0}) f(x)f(x0) f ( x ) ≥ f ( x 0 ) f(x) \geq f(x_{0}) f(x)f(x0),

(2) f ( x ) f(x) f(x) x 0 x_{0} x0处可导,则有 f ′ ( x 0 ) = 0 f'(x_{0}) = 0 f(x0)=0

Th2:(罗尔定理)

设函数 f ( x ) f(x) f(x)满足条件:

(1)在闭区间 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;
(2)在 ( a , b ) (a,b) (a,b)内可导;(3) f ( a ) = f ( b ) f\left( a \right) = f\left( b \right) f(a)=f(b)

则在 ( a , b ) (a,b) (a,b) ∃ \exists 一个 ξ \xi ξ,使 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0

Th3: (拉格朗日中值定理)

设函数 f ( x ) f(x) f(x)满足条件:

(1)在 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;(2)在 ( a , b ) (a,b) (a,b)内可导;

则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \frac{f(b) - f(a)}{b - a} = f'(\xi) baf(b)f(a)=f(ξ)

Th4: (柯西中值定理)

设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x)满足条件:

(1) 在 [ a , b ] \lbrack a,b\rbrack [a,b]上连续;(2)
( a , b ) (a,b) (a,b)内可导且 f ′ ( x ) f'(x) f(x) g ′ ( x ) g'(x) g(x)均存在,且 g ′ ( x ) ≠ 0 g'(x) \neq 0 g(x)=0

则在 ( a , b ) (a,b) (a,b)内存在一个 ξ \xi ξ,使
f ( b ) − f ( a ) g ( b ) − g ( a ) = f ′ ( ξ ) g ′ ( ξ ) \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)} g(b)g(a)f(b)f(a)=g(ξ)f(ξ)

10.洛必达法则

法则Ⅰ( 0 0 \frac{\mathbf{0}}{\mathbf{0}} 00型不定式极限)

设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim ⁡ x → x 0   f ( x ) = 0 , lim ⁡ x → x 0   g ( x ) = 0 \lim_{x \rightarrow x_{0}}\, f\left( x \right) = 0,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = 0 limxx0f(x)=0,limxx0g(x)=0;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) x 0 x_{0} x0的邻域内可导
(在 x 0 x_{0} x0处可除外)且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g(x)=0;

lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limxx0g(x)f(x)存在(或 ∞ \infty )。

则:
lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limxx0g(x)f(x)=limxx0g(x)f(x)

法则 I ′ \mathbf{I'} I
( 0 0 \frac{\mathbf{0}}{\mathbf{0}} 00型不定式极限)

设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim ⁡ x → ∞   f ( x ) = 0 , lim ⁡ x → ∞   g ( x ) = 0 \lim_{x \rightarrow \infty}\, f\left( x \right) = 0,\lim_{x \rightarrow \infty}\, g\left( x \right) = 0 limxf(x)=0,limxg(x)=0;存在一个 X > 0 X > 0 X>0,当 ∣ x ∣ > X \left| x \right| > X x>X时, f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)可导,且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g(x)=0; lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limxx0g(x)f(x)存在(或 ∞ \infty )。

则:
lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) . \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}. limxx0g(x)f(x)=limxx0g(x)f(x).

法则Ⅱ( ∞ ∞ \frac{\mathbf{\infty}}{\mathbf{\infty}} **型不定式极限) **

设函数 f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x)满足条件:
lim ⁡ x → x 0   f ( x ) = ∞ , lim ⁡ x → x 0   g ( x ) = ∞ \lim_{x \rightarrow x_{0}}\, f\left( x \right) = \infty,\lim_{x \rightarrow x_{0}}\, g\left( x \right) = \infty limxx0f(x)=,limxx0g(x)=;
f ( x ) , g ( x ) f\left( x \right),g\left( x \right) f(x),g(x) x 0 x_{0} x0 的邻域内可
导(在 x 0 x_{0} x0处可除外)且 g ′ ( x ) ≠ 0 g'\left( x \right) \neq 0 g(x)=0; lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)} limxx0g(x)f(x)存在(或 ∞ \infty )。

则:
lim ⁡ x → x 0   f ( x ) g ( x ) = lim ⁡ x → x 0   f ′ ( x ) g ′ ( x ) . \lim_{x \rightarrow x_{0}}\,\frac{f\left( x \right)}{g\left( x \right)} = \lim_{x \rightarrow x_{0}}\,\frac{f'\left( x \right)}{g'\left( x \right)}. limxx0g(x)f(x)=limxx0g(x)f(x).

同理法则 I I ′ II' II( ∞ ∞ \frac{\infty}{\infty} 型不定式极限)仿法则 I ′ I' I可写出

11.泰勒公式

设函数 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处的某邻域内具有 n + 1 n + 1 n+1阶导数,则对该邻域内异于 x 0 x_{0} x0的任意点 x x x,在 x 0 x_{0} x0 x x x之间至少存在一个 ξ \xi ξ,使得:

f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ f(x) = f(x_{0}) + f'(x_{0})(x - x_{0}) + \frac{1}{2!}f''(x_{0}){(x - x_{0})}^{2} + \cdots f(x)=f(x0)+f(x0)(xx0)+2!1f′′(x0)(xx0)2+
+ f ( n ) ( x 0 ) n ! ( x − x 0 ) n + R n ( x ) + \frac{f^{(n)}(x_{0})}{n!}{(x - x_{0})}^{n} + R_{n}(x) +n!f(n)(x0)(xx0)n+Rn(x)

其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}{(x - x_{0})}^{n + 1} Rn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1称为 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处的 n n n阶泰勒余项。

x 0 = 0 x_{0} = 0 x0=0,则 n n n阶泰勒公式:

f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + f ( n ) ( 0 ) n ! x n + R n ( x ) f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^{2} + \cdots + \frac{f^{(n)}(0)}{n!}x^{n} + R_{n}(x) f(x)=f(0)+f(0)x+2!1f′′(0)x2++n!f(n)(0)xn+Rn(x)……

(1) 其中
R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 R_{n}(x) = \frac{f^{(n + 1)}(\xi)}{(n + 1)!}x^{n + 1} Rn(x)=(n+1)!f(n+1)(ξ)xn+1 ξ \xi ξ在0与 x x x之间。(1)式称为麦克劳林公式

常用五种函数在 x 0 = 0 x_{0} = 0 x0=0处的泰勒公式 :

e x = 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + x n + 1 ( n + 1 ) ! e ξ e^{x} = 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + \frac{x^{n + 1}}{(n + 1)!}e^{\xi} ex=1+x+2!1x2++n!1xn+(n+1)!xn+1eξ
= 1 + x + 1 2 ! x 2 + ⋯ + 1 n ! x n + o ( x n ) = 1 + x + \frac{1}{2!}x^{2} + \cdots + \frac{1}{n!}x^{n} + o(x^{n}) =1+x+2!1x2++n!1xn+o(xn)

sin ⁡ x = x − 1 3 ! x 3 + ⋯ + x n n ! sin ⁡ nπ 2 + x n + 1 ( n + 1 ) ! sin ⁡ ( ξ + n + 1 2 π ) \sin x = x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{\left( n + 1 \right)!}\sin\left( \xi + \frac{n + 1}{2}\pi \right) sinx=x3!1x3++n!xnsin2+(n+1)!xn+1sin(ξ+2n+1π)


= x − 1 3 ! x 3 + ⋯ + x n n ! sin ⁡ nπ 2 + o ( x n ) = x - \frac{1}{3!}x^{3} + \cdots + \frac{x^{n}}{n!}\sin\frac{\text{nπ}}{2} + o\left( x^{n} \right) =x3!1x3++n!xnsin2+o(xn)

cos ⁡ x = 1 − 1 2 ! x 2 + ⋯ + x n n ! cos ⁡ nπ 2 + x n + 1 ( n + 1 ) ! c o s ( ξ + n + 1 2 π ) \cos x = 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + \frac{x^{n + 1}}{(n + 1)!}cos(\xi + \frac{n + 1}{2}\pi) cosx=12!1x2++n!xncos2+(n+1)!xn+1cos(ξ+2n+1π)


= 1 − 1 2 ! x 2 + ⋯ + x n n ! cos ⁡ nπ 2 + o ( x n ) = 1 - \frac{1}{2!}x^{2} + \cdots + \frac{x^{n}}{n!}\cos\frac{\text{nπ}}{2} + o(x^{n}) =12!1x2++n!xncos2+o(xn)

l n ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ( − 1 ) n x n + 1 ( n + 1 ) ( 1 + ξ ) n + 1 ln(1 + x) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + \frac{ {( - 1)}^{n}x^{n + 1}}{(n + 1){(1 + \xi)}^{n + 1}} ln(1+x)=x21x2+31x3+(1)n1nxn+(n+1)(1+ξ)n+1(1)nxn+1


= x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + o ( x n ) = x - \frac{1}{2}x^{2} + \frac{1}{3}x^{3} - \cdots + {( - 1)}^{n - 1}\frac{x^{n}}{n} + o(x^{n}) =x21x2+31x3+(1)n1nxn+o(xn)

( 1 + x ) m = 1 + mx + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n {(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} (1+x)m=1+mx+2!m(m1)x2++n!m(m1)(mn+1)xn
+ m ( m − 1 ) ⋯ ( m − n + 1 ) ( n + 1 ) ! x n + 1 ( 1 + ξ ) m − n − 1 + \frac{m(m - 1)\cdots(m - n + 1)}{(n + 1)!}x^{n + 1}{(1 + \xi)}^{m - n - 1} +(n+1)!m(m1)(mn+1)xn+1(1+ξ)mn1


( 1 + x ) m = 1 + mx + m ( m − 1 ) 2 ! x 2 + ⋯ + m ( m − 1 ) ⋯ ( m − n + 1 ) n ! x n + o ( x n ) {(1 + x)}^{m} = 1 + \text{mx} + \frac{m(m - 1)}{2!}x^{2} + \cdots + \frac{m(m - 1)\cdots(m - n + 1)}{n!}x^{n} + o(x^{n}) (1+x)m=1+mx+2!m(m1)x2++n!m(m1)(mn+1)xn+o(xn)

12.函数单调性的判断

Th1:
设函数 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)区间内可导,如果对 ∀ x ∈ ( a , b ) \forall x \in (a,b) x(a,b),都有KaTeX parse error: Got group of unknown type: 'internal'(或KaTeX parse error: Got group of unknown type: 'internal'),则函数 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内是单调增加的(或单调减少)。

Th2:
(取极值的必要条件)设函数 f ( x ) f(x) f(x) x 0 x_{0} x0处可导,且在 x 0 x_{0} x0处取极值,则KaTeX parse error: Got group of unknown type: 'internal'.

Th3:
(取极值的第一充分条件)设函数 f ( x ) f(x) f(x) x 0 x_{0} x0的某一邻域内可微,且KaTeX parse error: Got group of unknown type: 'internal'(或 f ( x ) f(x) f(x) x 0 x_{0} x0处连续,但KaTeX parse error: Got group of unknown type: 'internal'不存在.)。

(1)若当 x x x经过 x 0 x_{0} x0时,KaTeX parse error: Got group of unknown type: 'internal'由“+”变“-”,则 f ( x 0 ) f(x_{0}) f(x0)为极大值;

(2)若当 x x x经过 x 0 x_{0} x0时,KaTeX parse error: Got group of unknown type: 'internal'由“-”变“+”,则 f ( x 0 ) f(x_{0}) f(x0)为极小值;

(3)若KaTeX parse error: Got group of unknown type: 'internal'经过 x = x 0 x = x_{0} x=x0的两侧不变号,则 f ( x 0 ) f(x_{0}) f(x0)不是极值。

Th4:
(取极值的第二充分条件)设 f ( x ) f(x) f(x)在点 x 0 x_{0} x0处有 f ′ ′ ( x ) ≠ 0 f''(x) \neq 0 f′′(x)=0,且KaTeX parse error: Got group of unknown type: 'internal',则:

KaTeX parse error: Got group of unknown type: 'internal'时, f ( x 0 ) f(x_{0}) f(x0)为极大值;
KaTeX parse error: Got group of unknown type: 'internal'时, f ( x 0 ) f(x_{0}) f(x0)为极小值.
注:如果KaTeX parse error: Got group of unknown type: 'internal',此方法失效。

13.渐近线的求法

(1)水平渐近线

lim ⁡ x → + ∞   f ( x ) = b \lim_{x \rightarrow + \infty}\, f(x) = b limx+f(x)=b,或 lim ⁡ x → − ∞   f ( x ) = b \lim_{x \rightarrow - \infty}\, f(x) = b limxf(x)=b,则 y = b y = b y=b
称为函数 y = f ( x ) y = f(x) y=f(x)的水平渐近线。

(2)铅直渐近线

lim ⁡ x → x 0 −   f ( x ) = ∞ \lim_{x \rightarrow x_{0}^{-}}\, f(x) = \infty limxx0f(x)=,或 lim ⁡ x → x 0 +   f ( x ) = ∞ \lim_{x \rightarrow x_{0}^{+}}\, f(x) = \infty limxx0+f(x)=,则 x = x 0 x = x_{0} x=x0
称为 y = f ( x ) y = f(x) y=f(x)的铅直渐近线。

(3)斜渐近线
a = lim ⁡ x → ∞   f ( x ) x , b = lim ⁡ x → ∞   [ f ( x ) − ax ] a = \lim_{x \rightarrow \infty}\,\frac{f(x)}{x},\quad b = \lim_{x \rightarrow \infty}\,\lbrack f(x) - \text{ax}\rbrack a=limxxf(x),b=limx[f(x)ax],则
y = ax + b y = \text{ax} + b y=ax+b称为 y = f ( x ) y = f(x) y=f(x)的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在I上 f ′ ′ ( x ) < 0 f''(x) < 0 f′′(x)<0(或 f ′ ′ ( x ) > 0 f''(x) > 0 f′′(x)>0),
f ( x ) f(x) f(x)在I上是凸的(或凹的)。

Th2:
(拐点的判别定理1)若在 x 0 x_{0} x0 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0,(或 f ′ ′ ( x ) f''(x) f′′(x)不存在),当 x x x变动经过 x 0 x_{0} x0时, f ′ ′ ( x ) f''(x) f′′(x)变号,则 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))为拐点。

Th3:
(拐点的判别定理2)设 f ( x ) f(x) f(x) x 0 x_{0} x0点的某邻域内有三阶导数,且 f ′ ′ ( x ) = 0 f''(x) = 0 f′′(x)=0 f ′ ′ ′ ( x ) ≠ 0 f'''(x) \neq 0 f′′′(x)=0,则 ( x 0 , f ( x 0 ) ) (x_{0},f(x_{0})) (x0,f(x0))为拐点。

15.弧微分

dS = 1 + y ′ 2 dx \text{dS} = \sqrt{1 + y'^{2}}\text{dx} dS=1+y2 dx

16.曲率

曲线 y = f ( x ) y = f(x) y=f(x)在点 ( x , y ) (x,y) (x,y)处的曲率 k = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 2 . k = \frac{\left| y'' \right|}{ {(1 + y'^{2})}^{\frac{3}{2}}}. k=(1+y2)23y′′.
对于参数方程:

{ x = φ ( t ) y = ψ ( t )   , k = ∣ φ ′ ( t ) ψ ′ ′ ( t ) − φ ′ ′ ( t ) ψ ′ ( t ) ∣ [ φ ′ 2 ( t ) + ψ ′ 2 ( t ) ] 3 2 \left\{ \begin{matrix} & x = \varphi(t) \\ & y = \psi(t) \\ \end{matrix} \right.\ ,k = \frac{\left| \varphi'(t)\psi''(t) - \varphi''(t)\psi'(t) \right|}{ {\lbrack\varphi'^{2}(t) + \psi'^{2}(t)\rbrack}^{\frac{3}{2}}} { x=φ(t)y=ψ(t) ,k=[φ2(t)+ψ2(t)]23φ(t)ψ′′(t)φ′′(t)ψ(t)

17.曲率半径

曲线在点 M M M处的曲率 k ( k ≠ 0 ) k(k \neq 0) k(k=0)与曲线在点 M M M处的曲率半径 ρ \rho ρ有如下关系: ρ = 1 k \rho = \frac{1}{k} ρ=k1

[]{#header-n246 .anchor}

猜你喜欢

转载自blog.csdn.net/qq_44089890/article/details/130003162
今日推荐